Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Unveiling metabolic changes in stored rice seeds: A metabolomics approach

DOI
https://doi.org/10.14719/pst.8812
Submitted
10 April 2025
Published
09-08-2025 — Updated on 23-08-2025
Versions

Abstract

Rice is a vital staple crop that not only served as a primary food source but also contributed significantly to the national economy. Its propagation through seeds was therefore crucial for ensuring sustainable agricultural productivity. However, seed viability declined over time due to physiological and biochemical changes during storage, leading to deterioration and reduced quality. Understanding these metabolic changes was essential for preserving seed longevity. Metabolomics emerged as a robust analytical approach for profiling a wide range of rice seed metabolites and identifying biomarkers linked to seed ageing. Techniques like mass spectrometry (MS) and nuclear magnetic resonance (NMR) allowed for high-resolution, comprehensive analysis. Metabolomics enabled early detection of seed ageing with high accuracy and supported strategies that extended rice seed viability. This enhanced seed quality management and reduced post-harvest losses effectively. This review highlighted the metabolite composition of rice seeds, factors influencing changes during storage, key metabolomics methodologies and their applications in improving seed quality, longevity and future breeding programs.

References

  1. 1. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. An overview of global rice production, supply, trade and consumption. Ann NewYork Acad Sci. 2014;1324(1):7–14.
  2. 2. Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed longevity and ageing: a review on physiological and genetic factors with an emphasis on hormonal regulation. Plants. 2023;13(1):41. https://doi.org/10.3390/plants13010041
  3. 3. Aibara S, Ismail IA, Yamashita H, Ohta H, Sekiyama F, Morita Y. Changes in rice bran lipids and free amino acids during storage. Agric Biol Chem. 1986;50(3):665–73. https://doi.org/10.1080/00021369.1986.10867450
  4. 4. Oikawa A, Matsuda F, Kusano M, Okazaki Y, Saito K. Rice metabolomics. Rice. 2008;1:63–71. https://doi.org/10.1007/s12284-008-9009-4
  5. 5. Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, et al. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr B. 2007;855(1):71–79. https://doi.org/10.1016/j.jchromb.2007.05.002
  6. 6. Hall RD, de Maagd RA. Plant metabolomics is not ripe for environmental risk assessment. Trends Biotechnol. 2014;32(8):391–92. https://doi.org/10.1016/j.tibtech.2014.05.002
  7. 7. Frei M, Siddhuraju P, Becker K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 2003;83(3):395–402. https://doi.org/10.1016/S0308-8146(03)00101-8
  8. 8. Zhou Z, Robards K, Helliwell S, Blanchard C. Ageing of stored rice: changes in chemical and physical attributes. J Cereal Sci. 2002;35(1):65–78. https://doi.org/10.1006/jcrs.2001.0418
  9. 9. Hanashiro I. Fine structure of amylose. In: Nakamura Y, editor. Starch: metabolism and structure. Springer Nat; 2015. p. 41–60 https://doi.org/10.1007/978-4-431-55495-0_2
  10. 10. Bao J. Rice starch. In: Bao J, editor. Rice: Chemistry and Technology. Elsevier; 2019. p. 55–108 https://doi.org/10.1016/B978-0-12-811508-4.00003-4
  11. 11. Hoover R, Sailaja Y, Sosulski F. Characterization of starches from wild and long grain brown rice. Food Res Int. 1996;29(2):99–107. https://doi.org/10.1016/0963-9969(96)00016-6
  12. 12. Singh R, Perez CM, Pascual CG, Juliano BO. Grain size, sucrose level and starch accumulation in developing rice grain. Phytochem. 1978;17(11):1869–74. https://doi.org/10.1016/S0031-9422(00)88722-1
  13. 13. Stone B. Cereal grain carbohydrates. Cereal grain quality. Springer; 1996. p. 251–88 https://doi.org/10.1007/978-94-009-1513-8_9
  14. 14. MacLeod DAM, Preece PI. Studies on the free sugars of the barley grain V. Comparison of sugars and fructosans with those of other cereals. J Inst Brew. 1954;60(1):46–55. https://doi.org/10.1002/j.2050-0416.1954.tb02747.x
  15. 15. Buttrose M, Soeffky A. Ultrastructure of lipid deposits and other contents in freeze-etched coleoptile cells of ungerminated rice grains. Aust J Biol Sci. 1973;26(2):357–64. https://doi.org/10.1071/BI9730357
  16. 16. Normand F, Soignet D, Hogan J, Deobald H. Content of certain nutrients and amino acid patterns in high-protein rice flour. Rice J. 1966;69(9):13–18.
  17. 17. Houston D. High-protein flour can be made from all types of milled rice. Rice J. 1967;70(9):12–15.
  18. 18. Hogan J, Normand F, Deobald H, Mottern H, Lynn L, Hunnell J. Production of high-protein rice flour. Rice J. 1968;71(11):5–6.
  19. 19. Choudhury NH, Juliano BO. Lipids in developing and mature rice grain. Phytochem. 1980;19(6):1063–69. https://doi.org/10.1016/0031-9422(80)83057-3
  20. 20. Shewry PR, Casey R. Seed proteins. Springer; 1999. p. 1–10 https://doi.org/10.1007/978-94-011-4431-5_1
  21. 21. Wang W, Li Y, Dang P, Zhao S, Lai D, Zhou L. Rice secondary metabolites: structures, roles, biosynthesis and metabolic regulation. Molecules. 2018;23(12):3098. https://doi.org/10.3390/molecules23123098
  22. 22. Zhou Z, Robards K, Helliwell S, Blanchard C. The distribution of phenolic acids in rice. Food Chem. 2004;87(3):401–06. https://doi.org/10.1016/j.foodchem.2003.12.015
  23. 23. Huang B, Rachmilevitch S, Xu J. Root carbon and protein metabolism associated with heat tolerance. J Exp Bot. 2012;63(9):3455–65. https://doi.org/10.1093/jxb/ers003
  24. 24. Goufo P, Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol and phytic acid. J Food Sci Nutr. 2014;2(2):75–104. https://doi.org/10.1002/fsn3.86
  25. 25. Hay FR, Rezaei S, Buitink J. Seed moisture isotherms, sorption models and longevity. Front Plant Sci. 2022;13:891913. https://doi.org/10.3389/fpls.2022.891913
  26. 26. Naveed A, Zubair M, Baig A, Farid M, Ahmed W, Rehman R, et al. Effect of storage on the nutritional and antioxidant properties of brown Basmati rice. Food Sci Nutr. 2023;11(5):2086–98. https://doi.org/10.1002/fsn3.2962
  27. 27. Ramarathnam N, Osawa T, Namiki M, Kawakishi S. High temperature storage effect on longevity of rice seeds. J Food Sci. 1987;52(3):835–36. https://doi.org/10.1111/j.1365-2621.1987.tb06743.x
  28. 28. Du J, Lin Y, Gao Y, Tian Y, Zhang J, Fang G. Nutritional changes and early warning of moldy rice under different relative humidity and storage temperature. Foods. 2022;11(2):185. https://doi.org/10.3390/foods11020185
  29. 29. Wang W, He A, Peng S, Huang J, Cui K, Nie L. The effect of storage condition and duration on the deterioration of primed rice seeds. Front Plant Sci. 2018;9:172. https://doi.org/10.3389/fpls.2018.00172
  30. 30. Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, et al. Dissection of genotype-phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J. 2012;70(4):624–36. https://doi.org/10.1111/j.1365-313X.2012.04903.x
  31. 31. Redestig H, Kusano M, Ebana K, Kobayashi M, Oikawa A, Okazaki Y, et al. Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverage metabolomics. BMC Sys Biol. 2011;5:1–11. https://doi.org/10.1186/1752-0509-5-176
  32. 32. Zhou C, Tan Y, Goßner S, Li Y, Shu Q, Engel KH. Impact of crossing parent and environment on the metabolite profiles of progenies generated from a low phytic acid rice (Oryza sativa L.) mutant. J Agric Food Chem. 2019;67(8):2396–407. https://doi.org/10.1021/acs.jafc.8b06696
  33. 33. Yan S, Huang W, Gao J, Fu H, Liu J. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. Int J Plant Physiol Biochem. 2018;127:590–98. https://doi.org/10.1016/j.plaphy.2018.04.020
  34. 34. Lee JS, Hay FR. Variation in seed metabolites between two indica rice accessions differing in seed longevity. Plants. 2020;9(9):1237. https://doi.org/10.3390/plants9091237
  35. 35. Tsuzuki W, Suzuki Y, Yamada S, Kano S, Ohnishi H, Fujimoto T, et al. Effect of oxygen absorber on accumulation of free fatty acids in brown rice and whole grain wheat during storage. Lwt-Food Sci Technol. 2014;58(1):222–29.
  36. 36. Prasad CTM, Kodde J, Angenent GC, De Vos RC, Diez-Simon C, Mumm R, et al. Experimental rice seed aging under elevated oxygen pressure: Methodology and mechanism. Front Plant Sci. 2022;13:1050411. https://doi.org/10.3389/fpls.2022.1050411
  37. 37. Guglielminetti L, Yamaguchi J, Perata P, Alpi A. Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol. 1995;109(3):1069–76. https://doi.org/10.1104/pp.109.3.1069
  38. 38. Sivuk A, Kasatkina A, Strukova E, Naĭdina V, Zharkovskaia E. Effect of prolonged storage on various indices of the fatty components of freeze-dried products. Kosm Biol Aviakosm Med. 1986;20(2):69–72.
  39. 39. Zhu D, Shao Y, Fang C, Li M, Yu Y, Qin Y. Effect of storage time on chemical compositions, physiological and cooking quality characteristics of different rice types. J Sci Food Agric. 2023;103(4):2077–87. https://doi.org/10.1002/jsfa.12275
  40. 40. Chowdhury S, Chowdhury M, Bhattacherjee S, Ghosh K. Quality assessment of rice seed using different storage techniques. J Bangladesh Agril Univ. 2014;12(2):297–305. https://doi.org/10.3329/jbau.v12i2.28688
  41. 41. Wongdechsarekul S, Kongkiattikajorn J. Storage time affects storage proteins and volatile compounds and pasting behavior of milled rice. KKU Res J. 2010;15(9):852–62.
  42. 42. Sakakibara KY, Saito K. genetically modified plants for the promotion of human health. Biotechnol Lett. 2006;28:1983–91. https://doi.org/10.1007/s10529-006-9194-4
  43. 43. Xiao CN, Wang Y. NMR-based metabolomic methods and applications. Plant Met. 2014:275–301. https://doi.org/10.1007/978-94-017-9291-2_12
  44. 44. Emwas AH, Alghrably M, Al-Harthi S, Poulson BG, Szczepski K, Chandra K, et al. New advances in fast methods of 2D NMR experiments. Nucl Magn Reson. 2019:83–106. https://doi.org/10.5772/intechopen.90263
  45. 45. Gouilleux B, Rouger L, Giraudeau P. Ultrafast 2D NMR: methods and applications. Annu Rep NMR Spectrosc. 2018;93:75–144. https://doi.org/10.1016/bs.arnmr.2017.08.003
  46. 46. Parida AK, Panda A, Rangani J. Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In: Ahamad P, Ahanger MA, Aleymeni NA, editor. Plant Metabolites Regulation Under Environmental Stress. Academic Press; 2018. p. 89–131 https://doi.org/10.1016/B978-0-12-812689-9.00005-4
  47. 47. Fortier-McGill BE, Dutta MR, Lam L, Soong R, Liaghati-Mobarhan Y, Sutrisno A, et al. Comprehensive multiphase (CMP) NMR monitoring of the structural changes and molecular flux within a growing seed. J Agric Food Chem. 2017;65(32):6779–88. https://doi.org/10.1021/acs.jafc.7b02421
  48. 48. Bastawrous M, Jenne A, Tabatabaei AM, Simpson AJ. In-vivo NMR spectroscopy: A powerful and complimentary tool for understanding environmental toxicity. Metabolites. 2018;8(2):35. https://doi.org/10.3390/metabo8020035
  49. 49. Kapoore RV, Vaidyanathan S. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos Trans Royal Soc A. 2016;374(2079):20150363. https://doi.org/10.1098/rsta.2015.0363
  50. 50. Stoll DR, Harmes DC, Staples GO, Potter OG, Dammann CT, Guillarme D, et al. Development of comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal Chem. 2018;90(9):5923–29. https://doi.org/10.1021/acs.analchem.8b00776
  51. 51. Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12(4):797–813. https://doi.org/10.1038/nprot.2017.013
  52. 52. Ramautar R, de Jong GJ. Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis. 2014;6(7):1011–26. https://doi.org/10.4155/bio.14.51
  53. 53. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78. https://doi.org/10.1002/mas.20108
  54. 54. Mas S, Villas-Bôas SG, Edberg Hansen M, Åkesson M, Nielsen J. A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants. Biotechnol Bioeng. 2007;96(5):1014–22. https://doi.org/10.1002/bit.21194
  55. 55. Kopka J. Current challenges and developments in GC-MS based metabolite profiling technology. J Biotech. 2006;124(1):312–22. https://doi.org/10.1016/j.jbiotec.2005.12.012
  56. 56. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56(410):219–43. https://doi.org/10.1093/jxb/eri069
  57. 57. Bedair M, Sumner LW. Current and emerging mass-spectrometry technologies for metabolomics. Trends Anal Chem. 2008;27(3):238–50. https://doi.org/10.1016/j.trac.2008.01.006
  58. 58. Iwasa K, Cui W, Sugiura M, Takeuchi A, Moriyasu M, Takeda K. Structural analyses of metabolites of phenolic 1-benzyltetrahydroisoquinolines in plant cell cultures by LC/NMR, LC/MS and LC/CD. J Nat Prod. 2005;68(7):992–1000. https://doi.org/10.1021/np0402219
  59. 59. Ramautar R, Demirci A, de Jong GJ. Capillary electrophoresis in metabolomics.Trends Anal Chem. 2006;25(5):455–66. https://doi.org/10.1016/j.trac.2006.02.004
  60. 60. Monton MRN, Soga T. Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A. 2007;1168(1-2):237–46. https://doi.org/10.1016/j.chroma.2007.02.065
  61. 61. Junot C, Madalinski G, Tabet JC, Ezan E. Fourier transform mass spectrometry for metabolome analysis. Analyst. 2010;135(9):2203–19. https://doi.org/10.1039/c0an00021c
  62. 62. Brown SC, Kruppa G, Dasseux JL. Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev. 2005;24(2):223–31. https://doi.org/10.1002/mas.20011
  63. 63. Alves S, Rathahao-Paris E, Tabet JC. Potential of fourier transform mass spectrometry for high-throughput metabolomics analysis. Adv Bot Res 67: Elsevier; 2013. p. 219–302. https://doi.org/10.1016/B978-0-12-397922-3.00005-8
  64. 64. Han J, Danell RM, Patel JR, Gumerov DR, Scarlett CO, Speir JP, et al. Towards high-throughput metabolomics using ultrahigh-field fourier transform ion cyclotron resonance mass spectrometry. Metabolomics. 2008;4:128–40. https://doi.org/10.1007/s11306-008-0104-8
  65. 65. Pelczer I. High-resolution NMR for metabomics. Curr Opin Drug Discov Devel. 2005;8(1):127–33.
  66. 66. de Souza VD, Willems L, van Arkel J, Dekkers BJ, Hilhorst HW, Bentsink L. Galactinol as marker for seed longevity. Plant Sci. 2016;246:112–18. https://doi.org/10.1016/j.plantsci.2016.02.015
  67. 67. Zhu L, Tian Y, Ling J, Gong X, Sun J, Tong L. Effects of storage temperature on indica-japonica hybrid rice metabolites, analyzed using liquid chromatography and mass spectrometry. Int J Mol Sci. 2022;23(13):7421. https://doi.org/10.3390/ijms23137421
  68. 68. Hu H, Li S, Pan D, Wang K, Qiu M, Qiu Z, et al. The variation of rice quality and relevant starch structure during long-term storage. Agric. 2022;12(8):1211. https://doi.org/10.3390/agriculture12081211
  69. 69. Wang C, Feng Y, Fu T, Sheng Y, Zhang S, Zhang Y, et al. Effect of storage on metabolites of brown rice. J Sci Food Agric. 2020;100(12):4364–77. https://doi.org/10.1002/jsfa.10462
  70. 70. Zhang D, Duan X, Shang B, Hong Y, Sun H. Analysis of lipidomics profile of rice and changes during storage by UPLC-Q-extractive orbitrap mass spectrometry. Food Res Int. 2021;142:110214. https://doi.org/10.1016/j.foodres.2021.110214
  71. 71. Liu L, Waters DL, Rose TJ, Bao J, King GJ. Phospholipids in rice: Significance in grain quality and health benefits: A review. Food Chem. 2013;139(1–4):1133–45. https://doi.org/10.1016/j.foodchem.2012.12.046
  72. 72. Zhou Z, Blanchard C, Helliwell S, Robards K. Fatty acid composition of three rice varieties following storage. J Cereal Sci. 2003;37(3):327–35. https://doi.org/10.1006/jcrs.2002.0502
  73. 73. Caffrey M, Fonseca V, Leopold AC. Lipid-sugar interactions: relevance to anhydrous biology. Plant Physiol. 1988;86(3):754–58. https://doi.org/10.1104/pp.86.3.754https://doi.org/10.1104/pp.86.3.754
  74. 74. Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B. Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PloS One. 2014;9(9):e108020. https://doi.org/10.1371/journal.pone.0108020
  75. 75. Zhao Q, Xue Y, Shen Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage. Food Res Int. 2020;133:109160. https://doi.org/10.1016/j.foodres.2020.109160
  76. 76. Wang X, Zhou Q, Wang X, Song S, Liu J, Dong S. Mepiquat chloride inhibits soybean growth but improves drought resistance. Front Plant Sci. 2022;13:982415. https://doi.org/10.3389/fpls.2022.982415
  77. 77. Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007;58:459–81. https://doi.org/10.1146/annurev.arplant.58.032806.103946
  78. 78. Jeevan KS, Rajendra PS, Banerjee R, Thammineni C. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot. 2015;116(4):663–68. https://doi.org/10.1093/aob/mcv098
  79. 79. Kranner I, Colville L. Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot. 2011;72(1):93–105. https://doi.org/10.1016/j.envexpbot.2010.05.005
  80. 80. Halliwell B, Gutteridge J. Free radicals in biology and medicine: OUP. USA; 2015. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  81. 81. Godic A, Poljšak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev. 2014;2014. https://doi.org/10.1155/2014/860479
  82. 82. Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013. https://doi.org/10.1155/2013/956792
  83. 83. Chen D, Li Y, Fang T, Shi X, Chen X. Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice. Plant Sci. 2016;244:31–39. https://doi.org/10.1016/j.plantsci.2015.12.005
  84. 84. Bernal-Lugo I, Leopold A. Seed stability during storage: Raffinose content and seed glassy state1. Seed Sci Res. 1995;5(2):75–80. https://doi.org/10.1017/S0960258500002646
  85. 85. ElSayed A, Rafudeen M, Golldack D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. 2014;16(1):1–8. https://doi.org/10.1111/plb.12053
  86. 86. Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008;147(3):1251–63. https://doi.org/10.1104/pp.108.122465
  87. 87. Sengupta S, Mukherjee S, Basak P, Majumder AL. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci. 2015;6:656. https://doi.org/10.3389/fpls.2015.00656
  88. 88. Williams RJ, Leopold AC. The glassy state in corn embryos. Plant Physiol. 1989;89(3):977–81. https://doi.org/10.1104/pp.89.3.977
  89. 89. Leprince O, Hendry G, McKersie B. The mechanisms of desiccation tolerance in developing seeds. Seed Sci Res. 1993;3(4):231–46. https://doi.org/10.1017/S0960258500001859
  90. 90. Hwang JE, Ahn JW, Kwon SJ, Kim JB, Kim SH, Kang SY, et al. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Mol Biol Rep. 2014;41:7671–81. https://doi.org/10.1007/s11033-014-3660-1
  91. 91. Horvath G, Wessjohann L, Bigirimana J, Jansen M, Guisez Y, Caubergs R, et al. Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry. 2006;67(12):1185–95. https://doi.org/10.1016/j.phytochem.2006.04.004
  92. 92. Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, Borgschulte T, et al. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J. 2011;65(2):206–17. https://doi.org/10.1111/j.1365-313X.2010.04417.x
  93. 93. Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci Res. 2004;14(2):93–107. https://doi.org/10.1079/SSR2004159
  94. 94. Tappel AL. Vitamin E as the biological lipid antioxidant. Vitam Horm 20: Elsevier; 1962. p. 493–510. https://doi.org/10.1016/S0083-6729(08)60732-3
  95. 95. Behl C, Moosmann B. Oxidative nerve cell death in Alzheimers disease and stroke: antioxidants as neuroprotective compounds. 2002. https://doi.org/10.1515/BC.2002.053
  96. 96. Falk J, Munné-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot. 2010;61(6):1549–66. https://doi.org/10.1093/jxb/erq030
  97. 97. Freund DM, Hegeman AD. Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol. 2017;43:41-8. https://doi.org/10.1016/j.copbio.2016.08.002
  98. 98. Yang Z, Nakabayashi R, Okazaki Y, Mori T, Takamatsu S, Kitanaka S, et al. Toward better annotation in plant metabolomics: isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics. 2014;10:543–55. https://doi.org/10.1007/s11306-013-0619-5
  99. 99. Alawiye TT, Babalola OO. Metabolomics: Current application and prospects in crop production. Biol. 2021;76(1):227–39. https://doi.org/10.2478/s11756-020-00574-z

Downloads

Download data is not yet available.