Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

A review on advancing agricultural practices using photogrammetric images

DOI
https://doi.org/10.14719/pst.8813
Submitted
11 April 2025
Published
08-08-2025 — Updated on 23-08-2025
Versions

Abstract

Photogrammetry is a technique that involves the extraction of geometric information from two-dimensional images (2D). It is widely utilized in various fields for the creation of digital elevation models (DEM), orthomosaics and three-dimensional (3D) reconstructions of landscapes. In agriculture it is applied to obtain accurate and detailed spatial data for field variability mapping. It serves as a powerful tool in modern agriculture, contributing to high throughput phenotyping, monitoring growth patterns, pest attacks and nutrient deficiencies further helping in efficient resource management and decision-making about important farming operations. Real time monitoring further enhances its applicability in agriculture through the integration of photogrammetry with other technologies like drones, artificial intelligence and remote sensing. By harnessing the power of photogrammetry, stakeholders in the agricultural sector can unlock new possibilities for precision agriculture, resource optimization and ecosystem stewardship. Totally 300 articles were collected related to the topic of review from various sources in that nearly 100 articles were used to explore about photogrammetry progression, principles and software for processing images and mainly underscores the applications that offer farmers to enhance productivity by reducing environmental impact. The potential challenges and future directions in photogrammetric applications in agriculture are also discussed, highlighting the need for continued research and innovation to address evolving agricultural demands and sustainability goals.

References

  1. 1. Dostal C, Yamafune K. Photogrammetric texture mapping: A method for increasing the fidelity of 3D models of cultural heritage materials. J Archaeological Sci: Reports. 2018;18:430-36. https://doi.org/10.1016/j.jasrep.2018.01.024
  2. 2. Rami AR. Photogrammetry for archaeological documentation and cultural heritage conservation. In: Special applications of photogrammetry: IntechOpen [Internet]. London: 2012. Available from: https://doi.org/10.5772/35314
  3. 3. Geodetic Services Inc. Basics of photogrammetry. Melbourne (FL): Geodetic Systems, Inc.; 2017 [cited 2025 Jun 28]. Available from: https://www.geodetic.com/basics-of-photogrammetry/.
  4. 4. Carmen-Mihaela P, Adrian-Mihai N. Traditional and digital photogrammetric systems. J Young Scientist. 2017;5. Available from: https://journalofyoungscientist.usamv.ro/index.php/scientific-papers/past-issues?id=530
  5. 5. Derenyi EE. Photogrammetry: the concepts. Department of Geodesy and Geomatics Engineering, University of New Brunswick; 1996:220. Available from: http://www2.unb.ca/gge/Pubs/LN57.pdf
  6. 6. Fussell J, Rundquist D, Harrington J. On defining remote sensing. Photogrammetric Engineering and Remote Sensing. 1986;52(9):1507-11. https://doi.org/0099-1112/86/5209-1507$02.25/0
  7. 7. Clayton K. Geographical reference systems. Geographical J. 1971:1-13. https://doi.org/10.2307/1795355
  8. 8. Vasumathi V, Kalpana R, Pazhanivelan S, Kumaraperumal R, Priya M. Identification of start of season in major rainfed crops of Tamil Nadu, India using remote sensing technology. Intern J Environ Climate Change. 2022;12(11):327-34. https://doi.org/10.9734/ijecc/2022/v12i1130978
  9. 9. Valenca J, Julio E, Araujo H. Applications of photogrammetry to structural assessment. Experimental Techniques. 2012;36:71-81. https://doi.org/10.1111/j.1747-1567.2011.00731.x
  10. 10. Yakar M, Yilmaz HM, Gulec SA, Korumaz M. Advantage of digital close range photogrammetry in drawing of muqarnas in architecture. Inf Technol J. 2009;8(2):202-07. https://doi.org/10.3923/itj.2009.202.207
  11. 11. Saif W. Photogrammetry: A brief historical overview. Preprint [Internet]. 2022 Nov [cited 2025 Jun 28]. Available from: ResearchGate. https://doi.org/10.13140/RG.2.2.27518.87369
  12. 12. Center for photogrammetric training. History of photogrammetry [Internet]. British Columbia: University of British Columbia; c2008 [cited 2025 Jun 28].
  13. 13. Albertz J, Wiedemann A. From analogue to digital close-range photogrammetry. In: Proceedings of the First Turkish-German Joint Geodetic Days; 1995:245-53.
  14. 14. GIS Resources. Basics of photogrammetry [Internet]. 2013 Sep 01 [cited 2025 Jun 28].
  15. 15. Broome L. Comparison between terrestrial close range photogrammetry and terrestrial laser scanning [Masters' dissertation]. Queensland University of Southern Queensland; 2016 Available from: https://sear.unisq.edu.au/31381/
  16. 16. Aber JS, Marzolff I, Rise JB. Chapter 3 phtogrammetry. Small-Format Aerial Photography. 2010. p. 23-39. https://doi.org/10.1016/B978-0-444-53260-2.10003-1
  17. 17. Awange JL, Kiema KJB. Fundamentals of photogrammetry. Environ Geoinfo Monitor Manag. 2013:157-74. https://doi.org/10.1007/978-3-642-34085-7
  18. 18. Schenk T. Introduction to photogrammetry. The Ohio State University, Columbus. Department of Civil and Environmental Engineering and Geodetic Science. 2005;106(1):435. Available from: http://www.mat.uc.pt/~gil/downloads/IntroPhoto.pdf
  19. 19. Bethel D. Digital image processing in photogrammetry. The Photogrammetric Record. 1990;13(76):493-504. https://doi.org/10.1111/j.1477-9730.1990.tb00711.x
  20. 20. Parkin B, Shuttleworth G, Costen M, Davison C. A comparison of stereoscopic and monoscopic evaluation of optic disc topography using a digital optic disc stereo camera. British J Ophthalmology. 2001;85(11):1347-51. https://doi.org/10.1136/bjo.85.11.1347
  21. 21. Salazar-Gamarra R, Seelaus R, da Silva JVL, da Silva AM, Dib LL. Monoscopic photogrammetry to obtain 3D models by a mobile device: a method for making facial prostheses. J Otolaryngology-Head Neck Surgery. 2016;45(1):1-13. https://doi.org/10.1186/s40463-016-0145-3
  22. 22. Wu B. Photogrammetry: 3-D from imagery. International Encyclopedia of Geography; American Cancer Society: Atlanta, GA, USA; 2017:1-13. https://doi.org/10.1002/9781118786352.wbieg0942
  23. 23. Boher P, Leroux T, Bignon T, Collomb-Patton V. Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays. In: Stereoscopic Displays and Applications XXI. SPIE; 2010 https://doi.org/10.1117/12.837509
  24. 24. Silva WF, Rudorff BFT, Formaggio AR, Paradella WR, Mura JC. Simulated multipolarized MAPSAR images to distinguish agricultural crops. Scientia Agricola. 2012;69:201-09. https://doi.org/10.1590/S0103-90162012000300005
  25. 25. Toth C, Jozkow G. Remote sensing platforms and sensors: A survey. ISPRS J Photogrammetry and Remote Sensing. 2016;115:22-36. https://doi.org/10.1016/j.isprsjprs.2015.10.004
  26. 26. Colvocoresses AP. Remote sensing platforms. Circular 693. Reston (VA): US Geological Survey; 1974. p. 75. https://doi.org/10.3133/cir693
  27. 27. Sergieieva K. EOS Data Analytic; 2023. Available from: https://eoscom/blog/types-of-satellites/
  28. 28. Pepe M, Fregonese L, Scaioni M. Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. European J Remote Sensing. 2018;51(1):412-36. https://doi.org/10.1080/22797254.2018.1444945
  29. 29. Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J Photogrammetry and Remote Sensing. 2014;92:79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  30. 30. Colwell RN, Simonett DS, Ulaby FT, editors. In: Manual of remote sensing. Vol. 1. Theory, Instruments and Techniques. Falls Church (VA): American Society of Photogrammetry; 1983
  31. 31. Delgado-Vera C, Aguirre-Munizaga M, Jimenez-Icaza M, Manobanda-Herrera N, Rodriguez-Mendez A, editors. A photogrammetry software as a tool for precision agriculture: a case study. International Conference on Technologies and Innovation; 2017. https://doi.org/10.1007/978-3-319-67283-0_21
  32. 32. Kattan R, Abdulrahman FH, Gilyana SM, Zaya YY. 3D modelling and visualization of large building using photogrammetric approach. J Engineering Res. 2022;10(4A). https://doi.org/10.36909/jer.12167
  33. 33. Tache AV, Sandu ICA, Popescu OC, Petrisor AI. UAV solutions for the protection and management of cultural heritage. Case study: halmyris archaeological site. Intern J Conserv Sci. 2018;9(4):795-804.
  34. 34. Vaneeva M, Makarenco S, Redzhepov M, Netrebina J, Vaneev S, editors. Innovative photogrammetric methods for monitoring agrolandscapes nanorelief. In: IOP Conference Series: Earth and Environmental Science; 2020. IOP Publishing. https://doi.org/10.1088/1755-1315/422/1/012105
  35. 35. Pix4D office getting started and manual.
  36. 36. Wang HM, Song MY, Li X, Hu CY, Lu RX, Wang X, et al. High efficient grapevine growth monitor and in-lane deficiency localization by UAVA hyperspectral remote sensing. Acta Horticulturae Sinica. 2021;48(8). https://doi.org/10.16420/j.issn.0513-353x.2021-0441
  37. 37. Schwind M. Comparing and characterizing three-dimensional point clouds derived by structure from motion photogrammetry: Texas A&M University-Corpus Christi; 2016.
  38. 38. Psirofonia P, Samaritakis V, Eliopoulos P, Potamitis I. Use of unmanned aerial vehicles for agricultural applications with emphasis on crop protection: Three novel case-studies. Intern J Agric Sci and Technol. 2017;5(1):30-39. https://doi.org/10.12783/ijast.2017.0501.03
  39. 39. Meza J, Marrugo AG, Ospina G, Guerrero M, Romero LA. A structure-from-motion pipeline for generating digital elevation models for surface-runoff analysis. J of Physics: Conference Series; 2019. IOP Publishing. https://doi.org/10.1088/1742-6596/1247/1/012039
  40. 40. Park J, Jeong H, Kim J, Choi C. Development of open source-based automatic shooting and processing UAV imagery for orthoimage using smart camera UAV. Intern Arch Photogrammetry Remote Sensing Spatial Info Sci. 2016;41:941-44. https://doi.org/10.5194/isprs-archives-XLI-B7-941-2016
  41. 41. Kerekes GA. Open source 3d modeling from raster images. In: Proceedings of the 4th Conference of the Young Researchers, Technical University of Civil Engineering Bucharest; Mathematical Modelling in Civil Engineering - Special Issue; Nov 2013; Bucharest, Romania. p. 84-89. Available from: https://doi.org/10.1007/978-3-030-22587-2_5
  42. 42. Rupnik E, Daakir M, Pierrot DM. MicMac–a free, open-source solution for photogrammetry. Open Geospatial Data Software and Standards. 2017;2(1):1-9. https://doi.org/10.1186/s40965-017-0027-2
  43. 43. Tempelmann U, Borner A, Chaplin B, Hinsken L, Mykhalevych B, Miller S, et al. Photogrammetric software for the LH Systems ADS40 airborne digital sensor. Intern Arch Photogrammetry Remote Sensing. 2000;33:552-59.
  44. 44. James DW, Eckermann J, Belblidia F, Sienz J. Point cloud data from photogrammetry techniques to generate 3D geometry. In: Proceedings of the 23rd UK Conference of the Association for Computational Mechanics in Engineering (ACME 2015) [2015 Apr 8–10]. Swansea, UK. Swansea: Swansea University; 2015.
  45. 45. Sanlioglua I, Zeybeka M, Karauguzb G. Photogrammetric survey and 3d modeling of ivriz rock relief in late hittite era. Mediterranean Archaeology and Archaeometry. 2013;13(2): 147-57.
  46. 46. Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D. UAV photogrammetry for mapping and 3d modeling-current status and future perspectives. Intern Arch Photogrammetry Remote Sensing Spatial Info Sci. 2012;38:25-31. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011
  47. 47. Longley PA, Goodchild M, Maguire DJ, Rhind DW. Geographic information systems and science, 3rd ed. Chichester: Wiley; 2010
  48. 48. Aber JS, Marzolff I, Rise JB. Image processing and analysis. Small-format aerial photography. Book chapter; 2010. p. 159-81 https://doi.org/10.1016/B978-0-444-53260-2.10011-0
  49. 49. Shum HY, Szeliski R. Panoramic image mosaics. Citeseer; 1997.
  50. 50. Putz V, Zagar BG. Single-shot estimation of camera position and orientation using SVD. In: Proceedings of the 2008 IEEE Instrumentation and Measurement Technology Conference; 2008. IEEE. Available from: https://doi.org/10.1109/IMTC.2008.4547360
  51. 51. Motayyeb S, Fakhri SA, Varshosaz M, Pirasteh S. Enhancing contrast of images to improve geometric accuracy of a UAV photogrammetry project. Intern Arch Photogrammetry Remote Sensing Spatial Info Sci. 2022;43:389-98. https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-389-2022
  52. 52. Li Y, Gong P, Sasagawa T. Integrated shadow removal based on photogrammetry and image analysis. Intern J Remote Sensing. 2005;26(18):3911-29. https://doi.org/10.1080/01431160500159347
  53. 53. Richards JA, Jia X, editors. Remote sensing digital image analysis: An introduction. Springer, Berlin. 4th ed; 2006. p. 439 https://doi.org/10.1007/3-540-29711-1
  54. 54. Priya M, Kalpana R, Pazhanivelan S, Kumaraperumal R, Ragunath K, Vanitha G, et al. Monitoring vegetation dynamics using multi-temporal Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images of Tamil Nadu. J Appl and Nat Sci. 2023;15(3):1170-77. https://doi.org/10.31018/jans.v15i3.4803
  55. 55. Domadia SG, Zaveri T. Comparative analysis of unsupervised and supervised image classification techniques. In: Proceeding of National Conference on Recent Trends in Engineering and Technology; 2011.
  56. 56. Bhatta B. Remote sensing and GIS: Oxford University Press New Delhi; 2008.
  57. 57. Lee TH, Fauzi MFA, Komiya R. Segmentation of CT brain images using K-means and EM clustering. In: Proceedings of the 2008 Fifth International Conference on Computer Graphics, Imaging and Visualisation; 2008. IEEE. Available from: https://doi.org/10.1109/CGIV.2008.17
  58. 58. King RD. A brief history of stereoscopy. Wiley Interdisciplinary Reviews: Computational Statistics. 2013;5(4):334-40. https://doi.org/10.1002/wics.1264
  59. 59. Lavaquiol B, Sanz R, Llorens J, Arno J, Escola A. A photogrammetry-based methodology to obtain accurate digital ground-truth of leafless fruit trees. Computers and Electronics Agri. 2021;191:106553. https://doi.org/10.1016/j.compag.2021.106553
  60. 60. Walter J, Edwards J, McDonald G, Kuchel H. Photogrammetry for the estimation of wheat biomass and harvest index. Field Crops Res. 2018;216:165-74. https://doi.org/10.1016/j.fcr.2017.11.024
  61. 61. Goodbody TR, White JC, Coops NC, LeBoeuf A. Benchmarking acquisition parameters for digital aerial photogrammetric data for forest inventory applications: Impacts of image overlap and resolution. Remote Sensing of Environ. 2021;265:112677. https://doi.org/10.1016/j.rse.2021.112677
  62. 62. An N, Welch SM, Markelz RC, Baker RL, Palmer CM, Ta J, et al. Quantifying time-series of leaf morphology using 2D and 3D photogrammetry methods for high-throughput plant phenotyping. Computers and Electronics Agric. 2017;135:222-32. https://doi.org/10.1016/j.compag.2017.02.001
  63. 63. Gonzalez-Jorge H, Riveiro B, Arias P, Armesto J. Photogrammetry and laser scanner technology applied to length measurements in car testing laboratories. Measurement. 2012;45(3):354-63. https://doi.org/10.1016/j.measurement.2011.11.010
  64. 64. Aguilar M, Pozo J, Aguilar F, Sanchez-Hermosilla J, Paez F, Negreiros J. 3D surface modelling of tomato plants using close-range photogrammetry. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2008;37.
  65. 65. Gene-Mola J, Gregorio E, Cheein FA, Guevara J, Llorens J, Sanz-Cortiella R, et al. Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. Computers and Electronics Agric. 2020;168:105121. https://doi.org/10.1016/j.compag.2019.105165
  66. 66. Liu J, Feng Z, Yang L, Mannan A, Khan TU, Zhao Z, et al. Extraction of sample plot parameters from 3D point cloud reconstruction based on combined RTK and CCD continuous photography. Remote Sensing. 2018;10(8):1299. https://doi.org/10.3390/rs10081299
  67. 67. Liang X, Jaakkola A, Wang Y, Hyyppa J, Honkavaara E, Liu J, et al. The use of a hand-held camera for individual tree 3D mapping in forest sample plots. Remote Sensing. 2014;6(7):6587-603. https://doi.org/10.3390/rs6076587
  68. 68. Miller J, Morgenroth J, Gomez C. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban Forestry and Urban Greening. 2015;14(4):932-40. https://doi.org/10.1016/j.ufug.2015.09.001
  69. 69. Mendez V, Catalan H, Rosell-Polo JR, Arno J, Sanz R. LiDAR simulation in modelled orchards to optimise the use of terrestrial laser scanners and derived vegetative measures. Biosyst Eng. 2013;115(1):7-19. https://doi.org/10.1016/j.biosystemseng.2013.02.003
  70. 70. Rosell J, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers Electronics Agric. 2012;81:124-41. https://doi.org/10.1016/j.compag.2011.09.007
  71. 71. Paulus S. Measuring crops in 3D: using geometry for plant phenotyping. Plant Methods. 2019;15(1):1-13. https://doi.org/10.1186/s13007-019-0490-0
  72. 72. Grenzdorffer G, Engel A, Teichert B. The photogrammetric potential of low-cost UAVs in forestry and agriculture. Intern Arch Photogrammetry Remote Sensing Spatial Info Sci. 2008;31(B3):1207-14.
  73. 73. Reidelstuerz P, Link J, Graeff S, Claupein W, editors. UAV (unmanned aerial vehicles) for precision agriculture. In: Proceedings of the 13th Workshop on Computer Image Analysis in Agriculture and 4th Workshop on Precision Farming; 2007.
  74. 74. Che Y, Wang Q, Xie Z, Zhou L, Li S, Hui F, et al. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography. Ann Bot. 2020;126(4):765-73. https://doi.org/10.1093/aob/mcaa097
  75. 75. Maimaitijiang M, Sagan V, Erkbol H, Adrian J, Newcomb M, LeBauer D, et al. UAV-based sorghum growth monitoring: A comparative analysis of lidar and photogrammetry. ISPRS Ann of the Photogrammetry Remote Sensing and Spatial Info Sci. 2020;3:489-96. https://doi.org/10.5194/isprs-annals-V-3-2020-489-2020
  76. 76. Dorbu FE, Hashemi-Beni L. Detection of individual corn crop and canopy delineation from unmanned aerial vehicle imagery. Remote Sensing. 2024;16(14):2679. https://doi.org/10.3390/rs16142679
  77. 77. Yao M, Li W, Chen L, Zou H, Zhang R, Qiu Z, et al. Rice counting and localization in unmanned aerial vehicle imagery using enhanced feature fusion. Agro. 2024;14(4):868. https://doi.org/10.3390/agronomy14040868
  78. 78. Veramendi WNC, Cruvinel PE. Method for maize plants counting and crop evaluation based on multispectral images analysis. Computers Electronics Agric. 2024;216:108470. https://doi.org/10.1016/j.compag.2023.108470
  79. 79. Murakami T, Yui M, Amaha K. Canopy height measurement by photogrammetric analysis of Taerial images: Application to buckwheat (Fagopyrum esculentum Moench) lodging evaluation. Computers Electronics Agric. 2012;89:70-75. https://doi.org/10.1016/j.compag.2012.08.003
  80. 80. Jiang X, Li G, Lu D, Chen E, Wei X. Stratification-based forest aboveground biomass estimation in a subtropical region using airborne lidar data. Remote Sensing. 2020;12(7):1101. https://doi.org/10.3390/rs12071101
  81. 81. Li B, Xu X, Zhang L, Han J, Bian C, Li G, et al. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J Photogrammetry and Remote Sensing. 2020;162:161-72. https://doi.org/10.1016/j.isprsjprs.2020.02.013
  82. 82. Shen Y, Zhou H, Yang X, Lu X, Guo Z, Jiang L, et al. Biomass phenotyping of oilseed rape through UAV multi-view oblique imaging with 3DGS and SAM model. arXiv preprint arXiv:241108453. 2024. Available from: https://doi.org/10.48550/arXiv.2411.08453
  83. 83. Fei S, Xiao S, Li Q, Shu M, Zhai W, Xiao Y, et al. Enhancing leaf area index and biomass estimation in maize with feature augmentation from unmanned aerial vehicle-based nadir and cross-circling oblique photography. Computers Electronics Agric. 2023;215:108462. https://doi.org/10.1016/j.compag.2023.108462
  84. 84. Yang Z, Yu Z, Wang X, Yan W, Sun S, Feng M, et al. Estimation of millet aboveground biomass utilizing multi-source UAV image feature fusion. Agro. 2024;14(4):701. https://doi.org/10.3390/agronomy14040701
  85. 85. Martinez-Agirre A, Alvarez-Mozos J, Milenkovic M, Pfeifer N, Giménez R, Valle JM, et al. Evaluation of terrestrial laser scanner and structure from motion photogrammetry techniques for quantifying soil surface roughness parameters over agricultural soils. Earth Surface Processes and Landforms. 2020;45(3):605-21. https://doi.org/10.1002/esp.4758
  86. 86. Ouedraogo MM, Degre A, Debouche C, Lisein J. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology. 2014;214:339-55. https://doi.org/10.1016/j.geomorph.2014.02.016
  87. 87. Horcher A, Visser RJ. Unmanned aerial vehicles: applications for natural resource management and monitoring. Proceedings of the Council on FEorest Engineering Proceedings. 2004;5.
  88. 88. Anifantis AS, Camposeo S, Vivaldi GA, Santoro F, Pascuzzi S. Comparison of UAV photogrammetry and 3D modeling techniques with other currently used methods for estimation of the tree row volume of a super-high-density olive orchard. Agric. 2019;9(11):233. https://doi.org/10.3390/agriculture9110233
  89. 89. Herrero-Huerta M, Felipe-Garcia B, Belmar-Lizaran S, Hernandez-Lopez D, Rodríguez-Gonzalvez P, Gonzalez-Aguilera D. Dense canopy height model from a low-cost photogrammetric platform and LiDAR data. Trees. 2016;30:1287-301. https://doi.org/10.1007/s00468-016-1366-9
  90. 90. Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, et al. Combining UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley. Intern J Appl Earth Observation and Geoinformation. 2015;39:79-87. https://doi.org/10.1016/j.jag.2015.02.012
  91. 91. Gan H, Lee WS, Alchanatis V. A photogrammetry-based image registration method for multi-camera systems–with applications in images of a tree crop. Biosyst Eng. 2018;174:89-106. https://doi.org/10.1016/j.biosystemseng.2018.06.013
  92. 92. Andujar D, Calle M, Fernandez-Quintanilla C, Ribeiro A, Dorado J. Three-dimensional modeling of weed plants using low-cost photogrammetry. Sensors. 2018;18(4):1077. https://doi.org/10.3390/s18041077
  93. 93. Montgomery K, Henry JB, Vann MC, Whipker BE, Huseth AS, Mitasova H. Measures of canopy structure from low-cost UAS for monitoring crop nutrient status. Drones. 2020;4(3):36. https://doi.org/10.3390/drones4030036
  94. 94. Baofeng S, Jinru X, Chunyu X, Yuyang S, Fuentes S. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Intern J Agric Biol Eng. 2016;9(6): 119-30.
  95. 95. Mahlein A-K. Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease. 2016;100(2):241-51. https://doi.org/10.1094/PDIS-03-15-0340-FE
  96. 96. Li Y, Xia C, Lee J, editors. Vision-based pest detection and automatic spray of greenhouse plant. 2009 IEEE international symposium on industrial electronics; 2009. IEEE. https://doi.org/10.1109/ISIE.2009.5218251
  97. 97. del-Campo-Sanchez A, Ballesteros R, Hernandez-Lopez D, Ortega JF, Moreno MA, Agroforestry, et al. Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques. PLoS One. 2019;14(4):e0215521. https://doi.org/10.1371/journal.pone.0215521
  98. 98. Reyniers M, Vrindts E, De Baerdemaeker J. Optical measurement of crop cover for yield prediction of wheat. Biosyst Eng. 2004;89(4):383-94. https://doi.org/10.1016/j.biosystemseng.2004.09.003

Downloads

Download data is not yet available.