Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 8 No. 1 (2021)

Phytochemical Contents and Antioxidant Activity of Medicinal Plants from the Rubiaceae Family in Thailand

DOI
https://doi.org/10.14719/pst.2021.8.1.882
Submitted
2 August 2020
Published
01-01-2021

Abstract

Several plants of the Rubiaceae family possess potential pharmacological properties, such as antioxidant activity, for subsequent drug development. We investigated the methanolic extracts from the bark and wood of five Rubiaceae species for phenolic and flavonoid contents and antioxidant activity. Regarding the phytochemical contents and antioxidant activity, Mitragyna diversifolia wood (437.57 ± 9.90 mg GAE g-1) and Haldina cordifolia wood (30.11 ± 0.20 mg QE g-1) displayed the highest total phenolic content (TPC) and total flavonoid content (TFC) respectively. Morinda coreia bark followed the highest antioxidant activities (IC50 = 360.58 ± 19.28 µg ml-1) in the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), Catunaregam tomentosa bark (IC50 = 13.96 ± 5.32 µg ml-1) in the nitric oxide radical scavenging activity (NO), M. coreia wood (IC50 = 918.27 ± 0.16 µg ml-1) in the superoxide radical scavenging activity (SO) and M. coreia wood (IC50 = 236.65 ± 1.66 µg ml-1) in ferric reducing antioxidant power activity (FRAP). The TPC and TFC displayed strong correlations with DPPH in M. diversifolia wood and with FRAP in M. diversifolia bark and wood. We found high correlation between TFC and FRAP in all plant extracts except C. tomentosa wood, while no relation was detected between TFC and NO in all plant extracts. Comparing Rubiaceae species, the highest antioxidant potential were showed in C. tomentosa bark. Overall, it is worth mentioning that the Rubiaceae species exhibit potential as a promising source of natural antioxidants.

References

  1. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-62. https://doi.org/10.1016/j.cub.2014.03.034
  2. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1-26. https://doi.org/10.1155/2012/217037
  3. Poljšak B, Fink R. The protective role of antioxidants in the defense against ROS/RNS-mediated environmental pollution. Oxid Med Cell Longev. 2014;2014:1-22. https://doi.org/10.1155/2014/671539
  4. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention. Cancer Lett. 2008;266:60-72. https://doi.org/10.1016/j.canlet.2008.02.032
  5. Cicho?-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082-91. https://doi.org/10.3748/wjg.v20.i25.8082
  6. Moreira P, Smith MA, Zhu X, Honda K, Lee HG, Aliev G, et al. Oxidative damage and Alzheimer's disease: are antioxidant therapies useful?. Drug News Perspect. 2005;18(1):13. https://doi.org /10.1358/dnp.2005.18.1.877164
  7. Tan BL, Norhaizan ME, Liew WP, Sulaiman RH. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162. https://doi.org/10.3389/fphar.2018.01162
  8. Colak E. New markers of oxidative damage to macromolecules. J Med Biochem. 2008;27:1-16. https://doi.org/10.2478/v10011-007-0049-x
  9. Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the secretoglobin superfamily. Endocr Rev. 2007;7:707-25. https://doi.org/10.1210/er.2007-0018
  10. Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxid Med Cell Longev. 2013;2013:168039. https://doi.org/10.1155/2013/168039
  11. Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. N Y Acad Sci. 2003;991:120-31. https://doi.org/10.4061/2011/247467
  12. Heinecke JW. Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol. 1997;8:268-74. https://doi.org/10.1097/00041433-199710000-00005
  13. Sepulveda RT, Watson RR. Treatment of antioxidant deficiencies in AIDS patients. Nutr Res. 2002;22:27-37. https://doi.org/10.1016/S0271-5317(01)00355-4
  14. Martins D, Nunez CV. Secondary metabolites from Rubiaceae species. Molecules. 2015;20(7):13422–95. https://doi.org/10.3390/molecules200713422
  15. Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 2005;66(1):5-29. https://doi.org/10.1016/j.phytochem.2004.10.022
  16. Laki? NS, Mimica-Duki? MN, Isak JM, Božin B. Antioxidant properties of Galium verum L. (Rubiaceae) extracts. Cent Eur J Biol. 2010;5: 331-37. https://doi.org/10.2478/s11535-010-0022-4
  17. Torey A, Sasidharan S, Latha LY, Sudhakaran S, Ramanathan S. Antioxidant activity and total phenolic content of methanol extracts of Ixora coccinea. Pharm Biol. 2010;48(10):1119–23. https://doi.org/10.3109/13880200903490505
  18. Mavi A, Terzi Z, Özgen U, Yildirim A, Co?kun M. Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. verum (Rubiaceae), Urtica dioica (Urticaceae). Biol Pharm Bull. 2004;27(5):702-05. https://doi.org/10.1248/bpb.27.702
  19. Soobrattee MA, Bahorun T, Neergheen VS, Googoolye K, Aruoma OI. Assessment of the content of phenolics and antioxidant actions of the Rubiaceae, Ebenaceae, Celastraceae, Erythroxylaceae and Sterculiaceae families of Mauritian endemic plants. Toxicol In Vitro. 2008;22(1):45-56. https://doi.org/10.1016/j.tiv.2007.07.012
  20. Parthasarathy S, Bin Azizi J, Ramanathan S, Ismail S, Sasidharan S, Said MIM et al. Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae Family) leaves. Molecules. 2009;14:3964-74. https://doi.org/10.3390/molecules14103964
  21. Tanase C, Co?arc? S, Muntean DLA. Critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules. 2019; 24:1182. https://doi.org/10.3390/molecules24061182
  22. Beecher CWW, Farnsworth NR, Gyllenhaal C. Pharmacologically active secondary metabolites from wood. In: Rowe JW, (editor). Natural Products of Woody Plants. Berlin: Springer; 1989. p.1059-164.
  23. Suksungworn R, Sanevas N, Wongkantrakorn N, Fangern N, Vajrodaya S, Duangsrisai S. Phytotoxic effect of Haldina cordifolia on germination, seedling growth and root cell viability of weeds and crop plants. NJAS - Wageningen Journal of Life Sciences. 2016;78:175-81. https://doi.org/10.1016/j.njas.2016.05.008
  24. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal Plants. 2019;8(4):96. https://doi.org/10.3390/plants8040096
  25. Arvouet-Grand A, Vennat B, Pourrat A, Legret P. Standardization of propolis extract and identification of principal constituents. J Pharm Belg. 1994;49:462-68.
  26. Blois MS. Anioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200.
  27. Suksungworn R, Andrade PB, Oliveira AP, Valentão P, Duangsrisai S, Gomes NGM. Inhibition of proinflammatory enzymes and attenuation of IL-6 in LPS-challenged RAW 264.7 macrophages substantiates the ethnomedicinal use of the herbal drug Homalium bhamoense Cubitt & W.W.Sm. Int J Mol Sci. 2020;21:2421. https://doi.org/10.3390/ijms21072421
  28. Kuo CC, Shih MC, Kuo YH, Chiang W. Antagonism of free-radical-induced damage of adlay seed and its antiproliferative effect in human histolytic lymphoma U937 monocytic cells. J Agric Food Chem. 2001;49(3):1564-70. https://doi.org/10.1021/jf001215v
  29. Hi F, Jia X, Zhao C, Chen Y. Antioxidant activities of various extracts from Artemisia selengensis Turcz. (LuHao). ex Bess. Molecules. 2010;15(7):4934-46. https://doi.org/10.3390/molecules15074934
  30. Gan RY, Xu XR, Song FL, Kuang L, Li HB. Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. J Med Plant Res. 2010;4:2438-44. https://doi.org/10.5897/JMPR10.581
  31. Kumboonma P, Sombatsri S. Antioxidant activities and total phenolic contents from Thai wild fruits. KKU Sci J. 2019;47(1):34-42.
  32. Hossain MAA, Hossain MS, Fatema K., Siddique BA, Sikder H, Sarker MS, et al. An evaluation on antioxidant activity, total phenolic and total flavaonoid contents of extracts from Adina cordifolia (Roxb.) Hook: f. ex. Brandis. American Journal of Plant Sciences. 2015;6:633-39. https://doi.org/10.4236/ajps.2015.65068
  33. Begum S, Banerjee AB. Analysis of antioxidant activities, phenolic and other metabolites of some biomass waste (leaves) of India. Free Radicals and Antioxidants. 2018;8(2):102-10. https://doi.org/10.5530/fra.2018.2.16
  34. Kumari S, Verma SM, Kumar H, Kyal CK. Evaluation of antibacterial, antioxidant, wound healing properties of different solvent fractions of Adina cordifolia leaves in experimental animals. Advances in Research. 2017;12(1):1-13. https://doi.org/10.9734/AIR/2017/36610
  35. Baral P, Dubey A, Tewari S, Vasmatkar P, Verma AK. Total polyphenolic contents and antioxidant activity of leaf, bark and root of Adina cordifolia Benth. & Hook. Journal of Pharmaceutical, Chemical and Biological Sciences. 2016;4(3):394-401.
  36. Raypal P, Vermal AK, Tewari S, Dubey A. Analysis of medicinally important phytocompounds from Adina cordifolia leaves. Int J Curr Microbiol App Sci. 2018;7(11):3007-19. https://doi.org/10.20546/ijcmas.2018.711.345
  37. Kang W, Li C, Liu Y. Antioxidant phenolic compounds and flavonoids of Mitragyna rotundifolia (Roxb.) Kuntze in vitro. Med Chem Res. 2010;19:1222-32. https://doi.org/10.1007/s00044-009-9265-x.
  38. Dimitrios B. Sources of natural phenolic antioxidants. Trends Food Sci Technol. 2006;17(9):505-12. https://doi.org/10.1016/j.tifs.2006.04.004
  39. Chandini SK, Ganesan P, Bhaskar N. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem. 2008;107(2):707-13. https://doi.org/10.1016/j.foodchem.2007.08.081
  40. Abdelwahab S, Abdul AB, Elhassan MM, Mohan S, Al-Zubairi AS, Taha M et al. Antimicrobial and free radical scavenging activities of dichloromethane extract of Goniothalamus umbrosus. Int J Trop Med. 2009;4:32-36.
  41. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):24. https://doi.org/10.1016/0891-5849(95)02227-9.
  42. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal. 2013;2013:162750. https://doi.org/10.1155/2013/162750.
  43. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and Heartwood. Journal of Agricultural and Food Chemistry. 2001;49(7):3420–24. https://doi.org/10.1021/jf0100907
  44. Wang SY, Wu JH, Cheng SS, Lo CP, Chang HN, Shyur LF, et al. Antioxidant activity of extracts from Calocedrus formosana leaf, bark and heartwood. Journal of Wood Science. 2004; 50(5):422–26. https://doi.org/10.1007/s10086-003-0580-4
  45. Escarpa A, Gonza´lez MC. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal Chim Acta. 2001;427:119-27. https://doi.org/10.1016/S0003-2670(00)01188-0
  46. González J, Cruz JM, Dom??nguez H, Parajó JC. Production of antioxidants from Eucalyptus globulus wood by solvent extraction of hemicellulose hydrolysates. Food Chem. 2004;84(2):243-51.https://doi.org/10.1016/S0308-8146(03)00208-5
  47. Pawar C, Surana S. Antioxidant properties of the methanol extract of the wood and pericarp of Caesalpinia decapetala. J Young Pharm. 2010;JYP2(1):45-49. https://doi.org/10.4103/0975-1483.62212
  48. Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12:211. https://doi.org/10.1186/1472-6882-12-221.
  49. Govindan P, Muthukrishnan S. Evaluation of total phenolic content and free radical scavenging activity of Boerhavia erecta. Journal of Acute Medicine. 2013;3(3):103-39. https://doi.org/10.1016/j.jacme.2013.06.003.
  50. Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Flerlage N, Burillo J, et al. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. J Agric Food Chem. 2002;50(23):6882-90. https://doi.org/10.1021/jf020540a
  51. Hong Y, Yidan S, Li Z, Yanan Z, Yuling Y, Lan D, et al. Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem. 2010;118(1):84-89. https://doi.org/10.1016/j.foodchem.2009.04.094
  52. Lamounier KC, Cunha LCS, de Morais SAL, de Aquino FJT, Chang R, do Nascimento EA, et al. Chemical analysis and study of phenolics, antioxidant activity and antibacterial effect of the wood and bark of Maclura tinctoria (L.) D. Don ex Steud. Evid Based Complement Alternat Med. 2012;2012:451039. https://doi.org/10.1155/2012/451039
  53. Kai Y. Chemistry of extractives. In: Hon DS, Shiraishi N (editors). Wood and cellulosic chemistry. New York: Marcel Dekker; 1991.
  54. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152-78. https://doi.org/10.1016/S0076-6879(99)99017-1
  55. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agri Food Chem. 2009;57:1655-66. https://doi.org/10.1021/jf803537k
  56. Jing L, Ma H, Fan P, Gao R, Jia Z. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement Altern Med. 2015;15:287. https://doi.org/10.1186/s12906-015-0820-3
  57. Ngamdee P, Wichai U, Jiamyangyuen S. Correlation between phytochemical and mineral contents and antioxidant activity of black glutinous rice bran and its potential chemopreventive property. Food Technol Biotechnol. 2016;54(3):282-89. https://doi.org/10.17113/ftb.54.03.16.4346
  58. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53:4290-302. https://doi.org/10.1021/jf0502698
  59. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: chemical properties, biological activities and synthesis. Angew Chem Int Ed Engl. 2011;50(3):586-621. https://doi.org/10.1002/anie.201000044
  60. Esmaeili AK, Taha RM, Mohajer S, Banisalam B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Research International. 2015:12. https://doi.org/10.1155/2015/643285
  61. Kainama H, Fatmawati S, Santoso M, Papilaya PM, Ersam T. The relationship of free radical scavenging and total phenolic and flavonoid contents of Garcinia lasoar PAM. Pharm Chem J. 2020;53:1151-57. https://doi.org/10.1007/s11094-020-02139-5
  62. Khan RA, Khan MR, Sahreen S, Ahmed M. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Cent J. 2012;6(1):43. https://doi.org/10.1186/1752-153X-6-43
  63. Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol. 1999;58(5):759-65. https://doi.org/10.1016/s0006-2952(99)00160-4
  64. Duarte J, Francisco V, Perez-Vizcaino F. Modulation of nitric oxide by flavonoids. Food Funct. 2014;5(8):1653-68. https://doi.org/10.1039/c4fo00144c

Downloads

Download data is not yet available.