Phytochemical Contents and Antioxidant Activity of Medicinal Plants from the Rubiaceae Family in Thailand
DOI:
https://doi.org/10.14719/pst.2021.8.1.882Keywords:
Anti-radical, Traditional medicine, Herbal medicine, Nature productsAbstract
Several plants of the Rubiaceae family possess potential pharmacological properties, such as antioxidant activity, for subsequent drug development. We investigated the methanolic extracts from the bark and wood of five Rubiaceae species for phenolic and flavonoid contents and antioxidant activity. Regarding the phytochemical contents and antioxidant activity, Mitragyna diversifolia wood (437.57 ± 9.90 mg GAE g-1) and Haldina cordifolia wood (30.11 ± 0.20 mg QE g-1) displayed the highest total phenolic content (TPC) and total flavonoid content (TFC) respectively. Morinda coreia bark followed the highest antioxidant activities (IC50 = 360.58 ± 19.28 µg ml-1) in the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), Catunaregam tomentosa bark (IC50 = 13.96 ± 5.32 µg ml-1) in the nitric oxide radical scavenging activity (NO), M. coreia wood (IC50 = 918.27 ± 0.16 µg ml-1) in the superoxide radical scavenging activity (SO) and M. coreia wood (IC50 = 236.65 ± 1.66 µg ml-1) in ferric reducing antioxidant power activity (FRAP). The TPC and TFC displayed strong correlations with DPPH in M. diversifolia wood and with FRAP in M. diversifolia bark and wood. We found high correlation between TFC and FRAP in all plant extracts except C. tomentosa wood, while no relation was detected between TFC and NO in all plant extracts. Comparing Rubiaceae species, the highest antioxidant potential were showed in C. tomentosa bark. Overall, it is worth mentioning that the Rubiaceae species exhibit potential as a promising source of natural antioxidants.
Downloads
References
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-62. https://doi.org/10.1016/j.cub.2014.03.034
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1-26. https://doi.org/10.1155/2012/217037
Poljšak B, Fink R. The protective role of antioxidants in the defense against ROS/RNS-mediated environmental pollution. Oxid Med Cell Longev. 2014;2014:1-22. https://doi.org/10.1155/2014/671539
Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention. Cancer Lett. 2008;266:60-72. https://doi.org/10.1016/j.canlet.2008.02.032
Cicho?-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082-91. https://doi.org/10.3748/wjg.v20.i25.8082
Moreira P, Smith MA, Zhu X, Honda K, Lee HG, Aliev G, et al. Oxidative damage and Alzheimer's disease: are antioxidant therapies useful?. Drug News Perspect. 2005;18(1):13. https://doi.org /10.1358/dnp.2005.18.1.877164
Tan BL, Norhaizan ME, Liew WP, Sulaiman RH. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162. https://doi.org/10.3389/fphar.2018.01162
Colak E. New markers of oxidative damage to macromolecules. J Med Biochem. 2008;27:1-16. https://doi.org/10.2478/v10011-007-0049-x
Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the secretoglobin superfamily. Endocr Rev. 2007;7:707-25. https://doi.org/10.1210/er.2007-0018
Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxid Med Cell Longev. 2013;2013:168039. https://doi.org/10.1155/2013/168039
Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. N Y Acad Sci. 2003;991:120-31. https://doi.org/10.4061/2011/247467
Heinecke JW. Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol. 1997;8:268-74. https://doi.org/10.1097/00041433-199710000-00005
Sepulveda RT, Watson RR. Treatment of antioxidant deficiencies in AIDS patients. Nutr Res. 2002;22:27-37. https://doi.org/10.1016/S0271-5317(01)00355-4
Martins D, Nunez CV. Secondary metabolites from Rubiaceae species. Molecules. 2015;20(7):13422–95. https://doi.org/10.3390/molecules200713422
Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 2005;66(1):5-29. https://doi.org/10.1016/j.phytochem.2004.10.022
Laki? NS, Mimica-Duki? MN, Isak JM, Božin B. Antioxidant properties of Galium verum L. (Rubiaceae) extracts. Cent Eur J Biol. 2010;5: 331-37. https://doi.org/10.2478/s11535-010-0022-4
Torey A, Sasidharan S, Latha LY, Sudhakaran S, Ramanathan S. Antioxidant activity and total phenolic content of methanol extracts of Ixora coccinea. Pharm Biol. 2010;48(10):1119–23. https://doi.org/10.3109/13880200903490505
Mavi A, Terzi Z, Özgen U, Yildirim A, Co?kun M. Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. verum (Rubiaceae), Urtica dioica (Urticaceae). Biol Pharm Bull. 2004;27(5):702-05. https://doi.org/10.1248/bpb.27.702
Soobrattee MA, Bahorun T, Neergheen VS, Googoolye K, Aruoma OI. Assessment of the content of phenolics and antioxidant actions of the Rubiaceae, Ebenaceae, Celastraceae, Erythroxylaceae and Sterculiaceae families of Mauritian endemic plants. Toxicol In Vitro. 2008;22(1):45-56. https://doi.org/10.1016/j.tiv.2007.07.012
Parthasarathy S, Bin Azizi J, Ramanathan S, Ismail S, Sasidharan S, Said MIM et al. Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae Family) leaves. Molecules. 2009;14:3964-74. https://doi.org/10.3390/molecules14103964
Tanase C, Co?arc? S, Muntean DLA. Critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules. 2019; 24:1182. https://doi.org/10.3390/molecules24061182
Beecher CWW, Farnsworth NR, Gyllenhaal C. Pharmacologically active secondary metabolites from wood. In: Rowe JW, (editor). Natural Products of Woody Plants. Berlin: Springer; 1989. p.1059-164.
Suksungworn R, Sanevas N, Wongkantrakorn N, Fangern N, Vajrodaya S, Duangsrisai S. Phytotoxic effect of Haldina cordifolia on germination, seedling growth and root cell viability of weeds and crop plants. NJAS - Wageningen Journal of Life Sciences. 2016;78:175-81. https://doi.org/10.1016/j.njas.2016.05.008
Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal Plants. 2019;8(4):96. https://doi.org/10.3390/plants8040096
Arvouet-Grand A, Vennat B, Pourrat A, Legret P. Standardization of propolis extract and identification of principal constituents. J Pharm Belg. 1994;49:462-68.
Blois MS. Anioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200.
Suksungworn R, Andrade PB, Oliveira AP, Valentão P, Duangsrisai S, Gomes NGM. Inhibition of proinflammatory enzymes and attenuation of IL-6 in LPS-challenged RAW 264.7 macrophages substantiates the ethnomedicinal use of the herbal drug Homalium bhamoense Cubitt & W.W.Sm. Int J Mol Sci. 2020;21:2421. https://doi.org/10.3390/ijms21072421
Kuo CC, Shih MC, Kuo YH, Chiang W. Antagonism of free-radical-induced damage of adlay seed and its antiproliferative effect in human histolytic lymphoma U937 monocytic cells. J Agric Food Chem. 2001;49(3):1564-70. https://doi.org/10.1021/jf001215v
Hi F, Jia X, Zhao C, Chen Y. Antioxidant activities of various extracts from Artemisia selengensis Turcz. (LuHao). ex Bess. Molecules. 2010;15(7):4934-46. https://doi.org/10.3390/molecules15074934
Gan RY, Xu XR, Song FL, Kuang L, Li HB. Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. J Med Plant Res. 2010;4:2438-44. https://doi.org/10.5897/JMPR10.581
Kumboonma P, Sombatsri S. Antioxidant activities and total phenolic contents from Thai wild fruits. KKU Sci J. 2019;47(1):34-42.
Hossain MAA, Hossain MS, Fatema K., Siddique BA, Sikder H, Sarker MS, et al. An evaluation on antioxidant activity, total phenolic and total flavaonoid contents of extracts from Adina cordifolia (Roxb.) Hook: f. ex. Brandis. American Journal of Plant Sciences. 2015;6:633-39. https://doi.org/10.4236/ajps.2015.65068
Begum S, Banerjee AB. Analysis of antioxidant activities, phenolic and other metabolites of some biomass waste (leaves) of India. Free Radicals and Antioxidants. 2018;8(2):102-10. https://doi.org/10.5530/fra.2018.2.16
Kumari S, Verma SM, Kumar H, Kyal CK. Evaluation of antibacterial, antioxidant, wound healing properties of different solvent fractions of Adina cordifolia leaves in experimental animals. Advances in Research. 2017;12(1):1-13. https://doi.org/10.9734/AIR/2017/36610
Baral P, Dubey A, Tewari S, Vasmatkar P, Verma AK. Total polyphenolic contents and antioxidant activity of leaf, bark and root of Adina cordifolia Benth. & Hook. Journal of Pharmaceutical, Chemical and Biological Sciences. 2016;4(3):394-401.
Raypal P, Vermal AK, Tewari S, Dubey A. Analysis of medicinally important phytocompounds from Adina cordifolia leaves. Int J Curr Microbiol App Sci. 2018;7(11):3007-19. https://doi.org/10.20546/ijcmas.2018.711.345
Kang W, Li C, Liu Y. Antioxidant phenolic compounds and flavonoids of Mitragyna rotundifolia (Roxb.) Kuntze in vitro. Med Chem Res. 2010;19:1222-32. https://doi.org/10.1007/s00044-009-9265-x.
Dimitrios B. Sources of natural phenolic antioxidants. Trends Food Sci Technol. 2006;17(9):505-12. https://doi.org/10.1016/j.tifs.2006.04.004
Chandini SK, Ganesan P, Bhaskar N. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem. 2008;107(2):707-13. https://doi.org/10.1016/j.foodchem.2007.08.081
Abdelwahab S, Abdul AB, Elhassan MM, Mohan S, Al-Zubairi AS, Taha M et al. Antimicrobial and free radical scavenging activities of dichloromethane extract of Goniothalamus umbrosus. Int J Trop Med. 2009;4:32-36.
Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):24. https://doi.org/10.1016/0891-5849(95)02227-9.
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal. 2013;2013:162750. https://doi.org/10.1155/2013/162750.
Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and Heartwood. Journal of Agricultural and Food Chemistry. 2001;49(7):3420–24. https://doi.org/10.1021/jf0100907
Wang SY, Wu JH, Cheng SS, Lo CP, Chang HN, Shyur LF, et al. Antioxidant activity of extracts from Calocedrus formosana leaf, bark and heartwood. Journal of Wood Science. 2004; 50(5):422–26. https://doi.org/10.1007/s10086-003-0580-4
Escarpa A, Gonza´lez MC. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal Chim Acta. 2001;427:119-27. https://doi.org/10.1016/S0003-2670(00)01188-0
González J, Cruz JM, Dom??nguez H, Parajó JC. Production of antioxidants from Eucalyptus globulus wood by solvent extraction of hemicellulose hydrolysates. Food Chem. 2004;84(2):243-51.https://doi.org/10.1016/S0308-8146(03)00208-5
Pawar C, Surana S. Antioxidant properties of the methanol extract of the wood and pericarp of Caesalpinia decapetala. J Young Pharm. 2010;JYP2(1):45-49. https://doi.org/10.4103/0975-1483.62212
Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12:211. https://doi.org/10.1186/1472-6882-12-221.
Govindan P, Muthukrishnan S. Evaluation of total phenolic content and free radical scavenging activity of Boerhavia erecta. Journal of Acute Medicine. 2013;3(3):103-39. https://doi.org/10.1016/j.jacme.2013.06.003.
Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Flerlage N, Burillo J, et al. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. J Agric Food Chem. 2002;50(23):6882-90. https://doi.org/10.1021/jf020540a
Hong Y, Yidan S, Li Z, Yanan Z, Yuling Y, Lan D, et al. Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem. 2010;118(1):84-89. https://doi.org/10.1016/j.foodchem.2009.04.094
Lamounier KC, Cunha LCS, de Morais SAL, de Aquino FJT, Chang R, do Nascimento EA, et al. Chemical analysis and study of phenolics, antioxidant activity and antibacterial effect of the wood and bark of Maclura tinctoria (L.) D. Don ex Steud. Evid Based Complement Alternat Med. 2012;2012:451039. https://doi.org/10.1155/2012/451039
Kai Y. Chemistry of extractives. In: Hon DS, Shiraishi N (editors). Wood and cellulosic chemistry. New York: Marcel Dekker; 1991.
Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152-78. https://doi.org/10.1016/S0076-6879(99)99017-1
Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agri Food Chem. 2009;57:1655-66. https://doi.org/10.1021/jf803537k
Jing L, Ma H, Fan P, Gao R, Jia Z. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement Altern Med. 2015;15:287. https://doi.org/10.1186/s12906-015-0820-3
Ngamdee P, Wichai U, Jiamyangyuen S. Correlation between phytochemical and mineral contents and antioxidant activity of black glutinous rice bran and its potential chemopreventive property. Food Technol Biotechnol. 2016;54(3):282-89. https://doi.org/10.17113/ftb.54.03.16.4346
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53:4290-302. https://doi.org/10.1021/jf0502698
Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: chemical properties, biological activities and synthesis. Angew Chem Int Ed Engl. 2011;50(3):586-621. https://doi.org/10.1002/anie.201000044
Esmaeili AK, Taha RM, Mohajer S, Banisalam B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Research International. 2015:12. https://doi.org/10.1155/2015/643285
Kainama H, Fatmawati S, Santoso M, Papilaya PM, Ersam T. The relationship of free radical scavenging and total phenolic and flavonoid contents of Garcinia lasoar PAM. Pharm Chem J. 2020;53:1151-57. https://doi.org/10.1007/s11094-020-02139-5
Khan RA, Khan MR, Sahreen S, Ahmed M. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Cent J. 2012;6(1):43. https://doi.org/10.1186/1752-153X-6-43
Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol. 1999;58(5):759-65. https://doi.org/10.1016/s0006-2952(99)00160-4
Duarte J, Francisco V, Perez-Vizcaino F. Modulation of nitric oxide by flavonoids. Food Funct. 2014;5(8):1653-68. https://doi.org/10.1039/c4fo00144c
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rungcharn Suksungworn, Sutsawat Duangsrisai
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).