Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Recent efforts to increase Soybean (Glycine max L.) tolerance to abiotic stresses using CRISPR-Cas technology

DOI
https://doi.org/10.14719/pst.8822
Submitted
11 April 2025
Published
10-11-2025 — Updated on 27-11-2025
Versions

Abstract

In many countries, soybeans are an important cash crop because of their application in food, feed and biodiesel production. However, traditional breeding methods have limitations in producing the huge yields required by agriculture. Furthermore, soybean germplasm genetic diversity has decreased over time as a result of domestication and selective breeding. In this regard, novel molecular breeding technologies, including genome editing, have been developed to precisely modify agronomically desired characteristics such as yield, quality and abiotic/biotic stress tolerance. Biotic and abiotic stresses and the demand for higher crop yields and nutritional value are providing new difficulties to modern agriculture. Precision breeding utilizing CRISPR-Cas9 technology emerged as one of the most effective methods in crop production. Although many scientists are working on increasing soybean tolerance against different abiotic stresses, new modern approaches are still needed. This review discusses recent efforts devoted to solving salinity, drought and heat tolerance, flood resistance, disease resilience and crop improvement problems that utilized CRISPR-Cas9 technology. Furthermore, novel tools, such as virus-induced genome editing (VIGE) and omics-based approaches, integrated with the CRISPR/Cas9 platform, will be discussed. The opportunities and limitations of incorporating CRISPR technology into global agricultural systems are thoroughly examined. In total, we reviewed 54 papers from the NCBI database and the ScienceDirect portal. The outcomes highlighted in this work show the significance of CRISPR-Cas9 technology in improving soybean tolerance to abiotic stresses.

References

  1. 1. Saleem A, Anwar S, Nawaz T, Fahad S, Saud S, Ur Rahman T, et al. Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. J Agric Sci. 2024;1–18. https://doi.org/10.1007/s43994-024-00177-3
  2. 2. Lee H, Romero J. Climate change 2023. Synthesis Report. Summary for policymakers. Geneva: Intergovernmental Panel on Climate Change; 2023.
  3. 3. Ye H, Song L, Chen H, Valliyodan B, Cheng P, Ali L, et al. A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell Environ. 2018;41(9):2169–82. https://doi.org/10.1111/pce.13190
  4. 4. Zhou J, Mou H, Zhou J, Ali ML, Ye H, Chen P, et al. Qualification of soybean responses to flooding stress using UAV-based imagery and deep learning. Plant Phenomics. 2021;2021:9892570. https://doi.org/10.34133/2021/9892570
  5. 5. Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, et al. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol. 2023;21(10):640–56. https://doi.org/10.1038/s41579-023-00900-7
  6. 6. Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021;17(4):e1009503. https://doi.org/10.1371/journal.ppat.1009503
  7. 7. Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. The impact of climate change on agricultural insect pests. Insects. 2021;12(5):440. https://doi.org/10.3390/insects12050440
  8. 8. Razzaq MK, Akhter M, Ahmad RM, Cheema KL, Hina A, Karikari B, et al. CRISPR-Cas9 based stress tolerance: New hope for abiotic stress tolerance in chickpea (Cicer arietinum). Mol Biol Rep. 2022;49(9):8977–85. https://doi.org/10.1007/s11033-022-07391-4
  9. 9. Rasheed A, Raza A, Jie H, Mahmood A, Ma Y, Zhao L, et al. Molecular tools and their applications in developing salt-tolerant soybean (Glycine max L.) cultivars. Bioengineering. 2022;9(10):495. https://doi.org/10.3390/bioengineering9100495
  10. 10. Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, et al. Advances in CRISPR/Cas9-based research related to soybean [Glycine max (Linn.) Merr] molecular breeding. Front Plant Sci. 2023;14:1247707. https://doi.org/10.3389/fpls.2023.1247707
  11. 11. Chaudhry A, Hassan AU, Khan SH, Abbasi A, Hina A, Khan MT, et al. The changing landscape of agriculture: role of precision breeding in developing smart crops. Funct Integr Genomics. 2023;23(2):167. https://doi.org/10.1007/s10142-023-01093-1
  12. 12. Zhou J, Luan X, Liu Y, Wang L, Wang J, Yang S, et al. Strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding. Plants. 2023;12(7). https://doi.org/10.3390/plants12071478
  13. 13. McMillan M, Kallenbach CM, Whalen JK. Soybean abiotic stress tolerance is improved by beneficial rhizobacteria in biosolids-amended soil. Appl Soil Ecol. 2022;174:104425. https://doi.org/10.1016/j.apsoil.2022.104425
  14. 14. Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, et al. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res. 2025;73:53-72. https://doi.org/10.1016/ j.jare.2024.08.024
  15. 15. Movahedi A, Aghaei-Dargiri S, Li H, Zhuge Q, Sun W. CRISPR variants for gene editing in plants: biosafety risks and future directions. Int J Mol Sci. 2023;24(22):16241. https://doi.org/10.3390/ijms242216241
  16. 16. Chaudhary M, Mukherjee TK, Singh R, Gupta M, Goyal S, Singhal P, et al. CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. Mol Biol Rep. 2022;49(7):7101–10. https://doi.org/10.1007/s11033-022-07523-w
  17. 17. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91. https://doi.org/10.1038/nbt.2654
  18. 18. Wang M, Mao Y, Lu Y, Tao X, Zhu JK. Multiplex Gene Editing in rice using the CRISPR-Cpf1 system. Mol Plant. 2017;10(7):1011–3. https://doi.org/10.1016/j.molp.2017.03.001
  19. 19. Mirzakhmedov M, Kamalova L, Ayubov M, Normurodova KT, Ubaydullaeva KA, Buriev ZT, et al. Target genes utilized for drought tolerance enhancement in maize. Plant Sci Today. 2023;10(sp2):249–54. https://doi.org/10.14719/pst.2561
  20. 20. Kamalova L, Mirzakhmedov M, Ayubov M, Yusupov A, Mamajonov B, Obidov N, et al. Engineering drought tolerance in crops using CRISPR-Cas systems. Plant Sci Today. 2023;10(sp2):255–9. https://doi.org/10.14719/pst.2524
  21. 21. Asrorov AM, Ayubov MS, Darmanov MM, Narmatov SE, Mamajanov A, Bozorov IE, et al. A review of approaches to enhance salt stress tolerance in cotton by genetic engineering. Plant Sci Today. 2023;10(sp2):243–8. https://doi.org/10.14719/pst.2525
  22. 22. Niu F, Jiang Q, Sun X, Hu Z, Wang L, Zhang H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). Funct Plant Biol. 2021;48(11):1139–47. https://doi.org/10.1071/fp20400
  23. 23. Ojolo SP, Cao S, Priyadarshani SVGN, Li W, Yan M, Aslam M, et al. Regulation of plant growth and development: a review from a chromatin remodeling perspective. Front Plant Sci. 2018;9:1232. https://doi.org/10.3389/fpls.2018.01232
  24. 24. Ni FT, Chu LY, Shao HB, Liu ZH. Gene expression and regulation of higher plants under soil water stress. Curr Genomics. 2009;10(4):269–80. https://doi.org/10.2174/138920209788488535
  25. 25. Li HQ, Chen C, Chen RR, Song XW, Li JN, Zhu YM, et al. Preliminary analysis of the role of GmSnRK1.1 and GmSnRK1.2 in the ABA and alkaline stress response of the soybean using the CRISPR/Cas9-based gene double-knockout system. Yi Chuan. 2018;40(6):496–507. https://doi.org/10.16288/j.yczz.17-424
  26. 26. Liu Y, Cao L, Wu X, Wang S, Zhang P, Li M, et al. Functional characterization of wild soybean (Glycine soja) GsSnRK1.1 protein kinase in plant resistance to abiotic stresses. J Plant Physiol. 2023;280:153881. https://doi.org/10.1016/j.jplph.2022.153881
  27. 27. Liu L, Wang J, Zhang Q, Sun T, Wang P. Cloning of the soybean GmNHL1 gene and functional analysis under salt stress. Plants. 2023;12(22):3869. https://doi.org/10.3390/plants12223869
  28. 28. Du YT, Zhao MJ, Wang CT, Gao Y, Wang YX, Liu YW, et al. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol. 2018;18(1):320. https://doi.org/10.1186/s12870-018-1551-7.
  29. 29. Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol. 2021;105(3):333–45. https://doi.org/10.1007/s11103-020-01091-y.
  30. 30. Dong Q, Hu B, Zhang C. MicroRNAs and their roles in plant development. Front Plant Sci. 2022;13:824240. https://doi.org/10.3389/fpls.2022.824240
  31. 31. Ying SY, Chang DC, Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol. 2008;38(3):257–68. https://doi.org/10.1007/s12033-007-9013-8
  32. 32. Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, et al. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J. 2019;17(8):1482–500. https://doi.org/10.1111/pbi.13116
  33. 33. Mishra R, Tripathi MK, Tripathi N, Singh J, Yadav PK, Sikarwar RS, et al. Breeding for major genes against drought stress in soybean. Plant Biotechnol J. 2024;22(1):68–89.
  34. 34. Yu TF, Liu Y, Fu JD, Ma J, Fang ZW, Chen J, et al. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. Plant Biotechnol J. 2021;19(12):2589–605. https://doi.org/10.1111/pbi.13684
  35. 35. Zhou Y, Liu W, Li X. Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean. BMC Plant Biol. 2020;20(1):190. https://doi.org/10.1186/s12870-020-02370-y
  36. 36. Yang C, Huang Y, Lv W, Zhang Y, Bhat JA, Kong J, et al. GmNAC8 acts as a positive regulator in soybean drought stress. Plant Sci. 2020;293:110442. https://doi.org/10.1016/j.plantsci.2020.110442
  37. 37. Yang C, Huang Y, Lv P, Antwi-Boasiako A, Begum N, Zhao T, et al. NAC Transcription factor GmNAC12 improved drought stress tolerance in soybean. Int J Mol Sci. 2022;23(19). https://doi.org/10.3390/ijms231912029
  38. 38. Zhang Y, Li G, Hu S, Liu J, Jiang Y, Liu S, et al. Cloning and drought resistance analysis of soybean GmHsps_p23-like gene. Phyton Int J Exp Bot. 2022;91(6):1183–98. https://doi.org/10.32604/phyton.2022.018853
  39. 39. Huang Y, Xuan H, Yang C, Guo N, Wang H, Zhao J, et al. GmHsp90A2 is involved in soybean heat stress as a positive regulator. Plant Sci. 2019;285:26–33. https://doi.org/10.1016/j.plantsci.2019.04.016
  40. 40. Jianing G, Yuhong G, Yijun G, Rasheed A, Qian Z, Zhiming X, et al. Improvement of heat stress tolerance in soybean (Glycine max L), by using conventional and molecular tools. Front Plant Sci. 2022;13:993189. https://doi.org/10.3389/fpls.2022.993189
  41. 41. Shaffique S, Injamum-Ul-Hoque, Husen A, Kang SM, Lee IJ. Revolutionizing heat stress tolerance in Glycine max: exploring the latest advances in microbial application. Plant Stress. 2025;15:100725. https://doi.org/10.1016/j.stress.2024.100725
  42. 42. Razzaq MK, Aleem M, Mansoor S, Khan MA, Rauf S, Iqbal S, et al. Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. Int J Mol Sci. 2021;22(3):1292. https://doi.org/10.3390/ijms22031292
  43. 43. Dukare A, Mhatre P, Maheshwari HS, Bagul S, Manjunatha BS, Khade Y, et al. Delineation of the mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech. 2022;12(3):57. https:// doi.org/10.1007/s13205-022-03115-4
  44. 44. Gentzel IN, Ohlson EW, Redinbaugh MG, Wang GL. VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants. Stress Biol. 2022;2(1):2. https://doi.org/10.1007/s44154-021-00026-x
  45. 45. Basso MF, Lourenço-Tessutti IT, Moreira-Pinto CE, Mendes RAG, Paes-de-Melo B, das Neves MR, et al. Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita. Planta. 2022;256(4):83. https://doi.org/10.1007/s00425-022-03992-2
  46. 46. Lin L, Ye W, Wu J, Xuan M, Li Y, Gao J, et al. The MADS-box transcription factor PsMAD1 ss involved in zoosporogenesis and pathogenesis of Phytophthora sojae. Front Microbiol. 2018;9:2259. https://doi.org/10.3389/fmicb.2018.02259
  47. 47. Quan W, Hu Y, Mu Z, Shi H, Chan Z. Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. Plant Physiol Biochem. 2018;129:150–7. https://doi.org/10.1016/j.plaphy.2018.05.033
  48. 48. Zhang Z, Wang W, Ali S, Luo X, Xie L. CRISPR/Cas9-mediated multiple knockouts in abscisic acid receptor genes reduced the sensitivity to aBA during soybean seed germination. Int J Mol Sci. 2022;23(24):16173. https://doi.org/10.3390/ijms232416173
  49. 49. Ding X, Guo J, Lv M, Wang H, Sheng Y, Liu Y, et al. The miR156b-GmSPL2b module mediates male fertility regulation of cytoplasmic male sterility-based restorer line under high-temperature stress in soybean. Plant Biotechnol J. 2023;21(8):1542–59. https://doi.org/10.1111/pbi.14056
  50. 50. Abdullah HM, Pang N, Chilcoat B, Shachar-Hill Y, Schnell DJ, Dhankher OP. Overexpression of the Phosphatidylcholine: diacylglycerolcholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelina sativa seeds. Plant Physiol Biochem. 2024;208:108470. https://doi.org/10.1016/j.plaphy.2024.108470
  51. 51. Li H, Zhou R, Liu P, Yang M, Xin D, Liu C, et al. Design of high-monounsaturated fatty acid soybean seed oil using GmPDCTs knockout via a CRISPR-Cas9 system. Plant Biotechnol J. 2023;21(7):1317–9. https://doi.org/10.1111/pbi.14060
  52. 52. He M, Ding NZ. Plant unsaturated fatty acids: multiple roles in stress response. Front Plant Sci. 2020;11:562785. https://doi.org/10.3389/fpls.2020.562785
  53. 53. Kong K, Xu M, Xu Z, Lv W, Lv P, Begum N, et al. Dysfunction of GmVPS8a causes compact plant architecture in soybean. Plant Sci. 2023;331:111677. https://doi.org/10.1016/j.plantsci.2023.111677
  54. 54. Ricroch AE, Hénard-Damave MC. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol. 2016;36(4):675–90. https://doi.org/10.3109/07388551.2015.1004521

Downloads

Download data is not yet available.