Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Rootstock developments in avocado: Selection of rootstocks for biotic and abiotic stress mitigation

DOI
https://doi.org/10.14719/pst.8828
Submitted
11 April 2025
Published
07-09-2025

Abstract

Avocado (Persea americana Mill.) is a globally important fruit crop that is vulnerable to various biotic and abiotic stresses prevalent in subtropical regions, significantly affecting productivity. Rootstocks play a crucial role in mitigating stress factors and ensuring sustainable avocado cultivation. This review discusses the propagation methods for avocado rootstocks, including seed and clonal propagation techniques and examines the responses of different rootstocks to abiotic stresses such as salinity, poorly aerated soils, calcareous, alkaline soils and drought. It highlights the physiological, biochemical and molecular mechanisms involved in these stress responses. This review also covers resistance of various rootstocks against biotic stresses, including Laurel wilt (Harringtonia lauricola), root rot (Phytophthora cinnamomi), white root rot (Rosellina necatrix) and Verticillium wilt (Verticillium dahliae). Extensive research has identified promising rootstocks such as R0.05, Dusa, PP40 and R0.18 for salinity tolerance; West Indian rootstocks for tolerance to calcareous soils and rootstocks such as Duke 7, Toro Canyon and BG-83 for resistance against various other diseases. Understanding defense mechanisms such as callose deposition, lignification and pathogenesis-related protein production, will aid in developing molecular markers and screening techniques for tolerant rootstock selection. These specialized avocado rootstocks offer specific tolerance, making them ideal for diverse growing conditions. Enhancing stress resistance leads to more productive trees, which significantly boost the sustainability and profitability of commercial avocado cultivation.

References

  1. 1. Juma I, Fors H, Hovmalm HP, Nyomora A, Fatih M, Geleta M, et al. Avocado production and local trade in the Southern Highlands of Tanzania: a case of an emerging trade commodity from horticulture. Agronomy. 2019;9(11):749. https://doi.org/10.3390/agronomy9110749
  2. 2. Vetharaniam I, Stanley CJ, Cummins M, van den Dijssel C, Müller K. Modelling climate change impacts on location suitability for cultivating avocado and blueberry in New Zealand. Land. 2024;13(11):1753. https://doi.org/10.3390/land13111753
  3. 3. Chen H, Morrell PL, Ashworth VETM, de la Cruz M, Clegg MT. Tracing the geographic origins of major avocado cultivars. J Hered. 2008;100(1):56-65. https://doi.org/10.1093/jhered/esn068
  4. 4. FAO. Are you ready to lead? Using responsible business conduct to address risks in avocado businesses. Sustainable Tropical Fruits, No. 12. Rome: FAO; 2024.
  5. 5. Ford NA, Spagnuolo P, Kraft J, Bauer E. Nutritional composition of Hass avocado pulp. Foods. 2023;12(13). https://doi.org/10.3390/foods12132516
  6. 6. Marra A, Manousakis V, Zervas GP, Koutis N, Finos MA, Adamantidi T, et al. Avocado and its by-products as natural sources of valuable anti-inflammatory and antioxidant bioactives for functional foods and cosmetics with health-promoting properties. Appl Sci. 2024;14(14):5978. https://doi.org/10.3390/app14145978
  7. 7. García JSA, Hurtado-Salazar A, Ceballos-Aguirre N. Current overview of Hass avocado in Colombia. Challenges and opportunities: a review. Cienc Rural. 2021;51:e20200903. https://doi.org/10.1590/0103-8478cr20200903
  8. 8. Taramuel-Taramuel JP, Montoya-Restrepo IA, Barrios D. Challenges in the avocado production chain in Latin America: a descriptive analysis. Agron Colomb. 2024;42(2):e113982. https://doi.org/10.15446/agron.colomb.v42n2.113982
  9. 9. Denvir A. Avocado expansion and the threat of forest loss in Michoacán, Mexico under climate change scenarios. Appl Geogr. 2023;151:102856. https://doi.org/10.1016/j.apgeog.2022.102856
  10. 10. Cárceles Rodríguez B, Durán Zuazo VH, Franco Tarifa D, Cuadros Tavira S, Sacristan PC, García-Tejero IF. Irrigation alternatives for avocado (Persea americana Mill.) in the Mediterranean subtropical region in the context of climate change: a review. Agriculture. 2023;13(5):1049. https://doi.org/10.3390/agriculture13051049
  11. 11. Boza EJ, Tondo CL, Ledesma N, Campbell RJ, Bost J, Schnell RJ, et al. Genetic differentiation, races and interracial admixture in avocado (Persea americana Mill.), and Persea spp. evaluated using SSR markers. Genet Resour Crop Evol. 2018;65:1195-215. https://doi.org/10.1007/s10722-018-0608-7
  12. 12. Fassio C, Cautin R, Pérez-Donoso A, Bonomelli C, Castro M. Propagation techniques and grafting modify the morphological traits of roots and biomass allocation in avocado trees. HortTechnology. 2016;26(1):63-9. https://doi.org/10.21273/HORTTECH.26.1.63
  13. 13. Reyes-Herrera PH, Muñoz-Baena L, Velásquez-Zapata V, Patiño L, Delgado-Paz OA, Díaz-Diez CA, et al. Inheritance of rootstock effects in avocado (Persea americana Mill.) cv. Hass. Front Plant Sci. 2020;11:555071. https://doi.org/10.3389/fpls.2020.555071
  14. 14. Hiti-Bandaralage JC, Hayward A, Mitter N. Micropropagation of avocado (Persea americana Mill.). Am J Plant Sci. 2017;8(11):2898-921. https://doi.org/10.4236/ajps.2017.811197
  15. 15. Moraes AFG, Micheletti LB, Santoro MB, dos Santos NT, Avilés TC, da Silva SR. Horticultural performance of ‘Hass’ avocado grafted onto seedling and clonal rootstocks under tropical wet-dry climate conditions. Sci Hortic. 2022;302:111155. https://doi.org/10.1016/j.scienta.2022.111155
  16. 16. Cohen H, Bar-Noy Y, Irihimovitch V, Rubinovich L. Effects of seedling and clonal West Indian rootstocks irrigated with recycled water on ‘Hass’ avocado yield, fruit weight and alternate bearing. N Z J Crop Hortic Sci. 2023;51(1):39-51. https://doi.org/10.1080/01140671.2022.2098779
  17. 17. Li W, Ma X, Wang S, Huang W, Jiang M. The leafy-stem-buried etiolation contributed to the high efficiency of rootstock vegetative propagation in avocado (Persea americana). Horticulturae. 2024;10(7):770. https://doi.org/10.3390/horticulturae10070770
  18. 18. Duman Z, Hadas-Brandwein G, Eliyahu A, Belausov E, Abu-Abied M, Yeselson Y, et al. Short de-etiolation increases the rooting of VC801 avocado rootstock. Plants. 2020;9(11):1481. https://doi.org/10.3390/plants9111481
  19. 19. Hiti-Bandaralage J, Hayward A, Mitter N. Structural disparity of avocado rootstocks in vitro for rooting and acclimation success. Int J Plant Biol. 2022;13(4):426-42. https://doi.org/10.3390/ijpb13040035
  20. 20. Shelke D, Nikalje G, Nikam T, Maheshwari P, Punita D, Rao K, et al. Chloride (Cl⁻) uptake, transport, and regulation in plant salt tolerance. In: Hossain MA, Kumar V, Burritt DJ, Fujita M, Tran LS, editors. Molecular Plant Abiotic Stress: Biology and Biotechnology. Hoboken: Wiley; 2019. p. 241-68. https://doi.org/10.1002/9781119463665.ch13
  21. 21. Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: A review. Biochem Biophys Res Commun. 2018;495(1):286-91. https://doi.org/10.1016/j.bbrc.2017.11.043
  22. 22. Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants’ response mechanisms to salinity stress. Plants. 2023;12(12):2253. https://doi.org/10.3390/plants12122253
  23. 23. Lazare S, Yasuor H, Yermiyahu U, Kuhalskaya A, Brotman Y, Ben-Gal A, et al. It takes two: Reciprocal scion-rootstock relationships enable salt tolerance in 'Hass' avocado. Plant Sci. 2021;312:111048. https://doi.org/10.1016/j.plantsci.2021.111048
  24. 24. Lazare S, Haberman A, Yermiyahu U, Erel R, Simenski E, Dag A. Avocado rootstock influences scion leaf mineral content. Arch Agron Soil Sci. 2020;66(10):1399-409. https://doi.org/10.1080/03650340.2019.1672163
  25. 25. Celis N, Suarez DL, Wu L, Li R, Arpaia ML, Mauk P. Salt tolerance and growth of 13 avocado rootstocks related best to chloride uptake. HortScience. 2018;53(12):1737-45. https://doi.org/10.21273/HORTSCI13198-18
  26. 26. Acosta-Rangel AM, Li R, Celis N, Suarez DL, Santiago LS, Arpaia ML, et al. The physiological response of ‘Hass’ avocado to salinity as influenced by rootstock. Sci Hortic. 2019;256:108629. https://doi.org/10.1016/j.scienta.2019.108629
  27. 27. Lazare S, Cohen Y, Goldshtein E, Yermiyahu U, Ben-Gal A, Dag A. Rootstock-dependent response of Hass avocado to salt stress. Plants. 2021;10(8):1672. https://doi.org/10.3390/plants10081672
  28. 28. Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem. 2020;156:64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  29. 29. Marschner H. Marschner's mineral nutrition of higher plants. 3rd ed. London: Academic Press; 2011. https://doi.org/10.1016/C2009-0-63043-9
  30. 30. Selladurai R, Awachare CM. Nutrient management for avocado (Persea americana Miller). J Plant Nutr. 2020;43(1):138-47. https://doi.org/10.1080/01904167.2019.1659322
  31. 31. Singh D, Singh CK, Singh YP, Singh V, Singh R, Tomar RSS, et al. Evaluation of cultivated and wild genotypes of Lens species under alkalinity stress and their molecular collocation using microsatellite markers. PLoS One. 2018;13(8):e0199933. https://doi.org/10.1371/journal.pone.0199933
  32. 32. Zhao Q, Suo J, Chen S, Jin Y, Ma X, Yin Z, et al. Na₂CO₃-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep. 2016;6:32717. https://doi.org/10.1038/srep32717
  33. 33. Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol. 2011;75(6):593-605. https://doi.org/10.1007/s11103-011-9752-6
  34. 34. Alvarez-Acosta C, Marrero-Dominguez A, Gallo-Llobet L, Gonzalez-Rodriguez AM. Effects of NaCl and NaHCO₃ stress on morphological growth and nutrient metabolism on selected avocados (Persea americana Mill.). J Plant Nutr. 2019;42(2):164-77. https://doi.org/10.1080/01904167.2018.1551490
  35. 35. Zhang J, Wang J, Jiang W, Liu J, Yang S, Gai J, et al. Identification and analysis of NaHCO₃ stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq. Front Plant Sci. 2016;7:1842. https://doi.org/10.3389/fpls.2016.01842
  36. 36. Guo M, Li S, Tian S, Wang B, Zhao X. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba). PLoS One. 2017;12(10):e0185732. https://doi.org/10.1371/journal.pone.0185732
  37. 37. Liu J, Shi DC. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica. 2010;48:127-34. https://doi.org/10.1007/s11099-010-0017-4
  38. 38. Alvarez-Acosta C, Marrero-Dominguez A, Gallo-Llobet L, Gonzalez-Rodriguez AM. Physiological response of selected avocados (Persea americana) subjected to NaCl and NaHCO₃ stress. Sci Hortic. 2018;237:81-8. https://doi.org/10.1016/j.scienta.2018.04.010
  39. 39. Sanclemente MA, Schaffer B, Gil PM, Vargas AI, Davies FS. Pruning after flooding hastens recovery of flood-stressed avocado (Persea americana Mill.) trees. Sci Hortic. 2014;169:27-35. https://doi.org/10.1016/j.scienta.2014.01.034
  40. 40. Rao L, Li S, Cui X. Leaf morphology and chlorophyll fluorescence characteristics of mulberry seedlings under waterlogging stress. Sci Rep. 2021;11:92782. https://doi.org/10.1038/s41598-021-92782-z
  41. 41. Derebe AD, Weyuma Dema M, Roro AG. Impact of waterlogging stress on grafted avocado (Persea americana) seedlings growth and physiological performance. Cogent Food Agric. 2023;9(1):2261837. https://doi.org/10.1080/23311932.2023.2261837
  42. 42. Habibi F, Liu T, Shahid MA, Schaffer B, Sarkhosh A. Physiological, biochemical, and molecular responses of fruit trees to root zone hypoxia. Environ Exp Bot. 2023;206:105179. https://doi.org/10.1016/j.envexpbot.2022.105179
  43. 43. Lin SY, Chen PA, Zhuang BW. The stomatal conductance and Fv/Fm as the indicators of stress tolerance of avocado seedlings under short-term waterlogging. Agronomy. 2022;12(5):1084. https://doi.org/10.3390/agronomy12051084
  44. 44. Reeksting BJ, Olivier NA, Van den Berg N. Transcriptome responses of an ungrafted Phytophthora root rot tolerant avocado (Persea americana) rootstock to flooding and Phytophthora cinnamomi. BMC Plant Biol. 2016;16:149. https://doi.org/10.1186/s12870-016-0893-2
  45. 45. Doupis G, Kavroulakis N, Psarras G, Papadakis I. Growth, photosynthetic performance and antioxidative response of ‘Hass’ and ‘Fuerte’ avocado (Persea americana Mill.) plants grown under high soil moisture. Photosynthetica. 2017;55(4):655-63. https://doi.org/10.1007/s11099-016-0679-7
  46. 46. Reeksting BJ, Taylor N, Van den Berg N. Flooding and Phytophthora cinnamomi: Effects on photosynthesis and chlorophyll fluorescence in shoots of non-grafted Persea americana (Mill.) rootstocks differing in tolerance to Phytophthora root rot. S Afr J Bot. 2014;95:40-53. https://doi.org/10.1016/j.sajb.2014.08.004
  47. 47. Hatfield JL, Dold C. Water-use efficiency: Advances and challenges in a changing climate. Front Plant Sci. 2019;10:103. https://doi.org/10.3389/fpls.2019.00103
  48. 48. Kourgialas NN, Dokou Z. Water management and salinity adaptation approaches of avocado trees: A review for hot-summer Mediterranean climate. Agric Water Manag. 2021;252:106923. https://doi.org/10.1016/j.agwat.2021.106923
  49. 49. Guillermo MO, Adela Z, Antonio M, Olivier NA, Noëlani VDB, Palomo-Ríos E, et al. Physiological and molecular responses of ‘Dusa’ avocado rootstock to water stress: Insights for drought adaptation. Plants. 2021;10(10):2077. https://doi.org/10.3390/plants10102077
  50. 50. Zhang X, Lei L, Lai J, Zhao H, Song W. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol. 2018;18(1):68. https://doi.org/10.1186/s12870-018-1281-x
  51. 51. Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought stress responses and resistance in plants: From cellular responses to long-distance intercellular communication. Front Plant Sci. 2020;11:556972. https://doi.org/10.3389/fpls.2020.556972
  52. 52. Zhang Z, Cao B, Li N, Chen Z, Xu K. Comparative transcriptome analysis of the regulation of ABA signaling genes in different rootstock grafted tomato seedlings under drought stress. Environ Exp Bot. 2019;166:103814. https://doi.org/10.1016/j.envexpbot.2019.103814
  53. 53. Navia-Urrutia M, Sánchez-Pinzón L, Parra PP, Gazis R. A Diagnostic Guide for Laurel Wilt Disease in Avocado. Plant Health Prog. 2022;23(3):345-54. https://doi.org/10.1094/PHP-12-21-0149-DG
  54. 54. Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE 3rd, Hanula JL, et al. A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis. 2008;92(2):215-24. https://doi.org/10.1094/PDIS-92-2-0215
  55. 55. Cloonan KR, Montgomery WS, Narvaez TI, Carrillo D, Kendra PE. Community of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) in agricultural and forest ecosystems with laurel wilt. Insects. 2022;13(11):960. https://doi.org/10.3390/insects13110971
  56. 56. Ploetz RC, Schaffer B, Vargas AI, Konkol JL, Salvatierra J, Wideman R. Impact of laurel wilt, caused by Raffaelea lauricola, on leaf gas exchange and xylem sap flow in Persea americana. Phytopathology. 2015;105(4):433-40. https://doi.org/10.1094/PHYTO-07-14-0196-R
  57. 57. Ploetz RC, Kendra PE, Choudhury RA, Rollins JA, Campbell A, Garrett K, et al. Laurel wilt in natural and agricultural ecosystems: understanding the drivers and scales of complex pathosystems. Forests. 2017;8(2):48. https://doi.org/10.3390/f8020048
  58. 58. Castillo-Argaez R, Schaffer B, Vazquez A, Sternberg LD. Leaf gas exchange and stable carbon isotope composition of redbay and avocado trees in response to laurel wilt or drought stress. Environ Exp Bot. 2020;171:103948. https://doi.org/10.1016/j.envexpbot.2019.103948
  59. 59. Crane J, Wasielewski J, Carrillo D, Evans E, Gazis R, Schaffer B, et al., editors. Effect of the laurel wilt epidemic on Florida’s avocado industry. IX World Avocado Congress; 2019. Medellín, Colombia. https://worldavocadocongress.co/wp-content/uploads/2019/11/wac-054-full-text-jeff-wasielewski.pdf
  60. 60. Castillo-Argaez R, Konkol JL, Vargas AI, Ploetz RC, Schaffer B. Disease severity and ecophysiology of rootstock/scion combinations of different avocado (Persea americana Mill.) genotypes in response to laurel wilt. Sci Hortic. 2021;287:110250. https://doi.org/10.1016/j.scienta.2021.110250
  61. 61. Castillo-Argaez R, Vazquez A, Konkol JL, Vargas AI, Ploetz RC, Etxeberria E, et al. Sap flow, xylem anatomy and photosynthetic variables of three Persea species in response to laurel wilt. Tree Physiol. 2021;41(6):1004–18. https://doi.org/10.1093/treephys/tpaa137
  62. 62. Cloonan KR, Rohde BB, Montgomery WS, Narvaez TI, Winterstein MC, Ali GS, et al. Impact of laurel wilt on the avocado germplasm collection at the United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station. Fla Entomol. 2024;107(1):20240047. https://doi.org/10.1515/flaent-2024-0047
  63. 63. Dunstan WA, Howard K, Hardy GES, Burgess TI. An overview of Australia’s Phytophthora species assemblage in natural ecosystems recovered from a survey in Victoria. IMA Fungus. 2016;7(1):47–58. https://doi.org/10.5598/imafungus.2016.07.01.04
  64. 64. Hardham AR, Blackman LM. Phytophthora cinnamomi. Mol Plant Pathol. 2018;19(2):260–85. https://doi.org/10.1111/mpp.12568
  65. 65. Sánchez-González EI, Gutiérrez-Soto JG, Olivares-Sáenz E, Gutiérrez-Díez A, Barrientos-Priego AF, Ochoa-Ascencio S. Screening progenies of Mexican race avocado genotypes for resistance to Phytophthora cinnamomi Rands. HortScience. 2019;54(5):809–13. https://doi.org/10.21273/HORTSCI13552-18
  66. 66. Kavroulakis N, Tziros GT, Mikalef L, Malandrakis AA. First report of Phytophthora cinnamomi causing root rot of avocado trees in Greece. Plant Dis. 2024:PDIS-05-24-0939-PDN. https://doi.org/10.1094/PDIS-05-24-0939-PDN
  67. 67. Madhu G, Rani A, Muralidhara B, Rajendiran S, Sriram S, Venkataravanappa V. First report of Phytophthora cinnamomi causing avocado root rot in India. J Plant Pathol. 2023;105(4):1721. https://doi.org/10.1007/s42161-023-01471-5
  68. 68. Neilsen MJ. Evaluation of Phytophthora root rot resistance in avocado [dissertation]. Queensland, Australia: The University of Queensland; 2016. 185 pp.
  69. 69. Rodríguez-Henao E, Caicedo-Arana Á, Enriquez-Valencia AL, Muñoz-Florez JE. Evaluation of tolerance to Phytophthora cinnamomi Rands in avocado (Persea americana Miller.) germplasm. Acta Agron. 2017;66(1):128–34.
  70. 70. Van den Berg N, Christie J, Aveling T, Engelbrecht J. Callose and β-1,3-glucanase inhibit Phytophthora cinnamomi in a resistant avocado rootstock. Plant Pathol. 2018;67(5):1150–60. https://doi.org/10.1111/ppa.12819
  71. 71. Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, et al. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol. 2024;15:1341803. https://doi.org/10.3389/fmicb.2024.1341803
  72. 72. Wang Y, Bouwmeester K, van de Mortel JE, Shan W, Govers F. A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence. Plant Cell Environ. 2013;36(6):1192–203. https://doi.org/10.1111/pce.12052
  73. 73. Van den Berg N, Mahomed W, Olivier NA, Swart V, Crampton BG. Transcriptome analysis of an incompatible Persea americana–Phytophthora cinnamomi interaction reveals the involvement of SA- and JA-pathways in a successful defense response. PLoS One. 2018;13(10):e0205705. https://doi.org/10.1371/journal.pone.0205705
  74. 74. Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol. 2019;20(8):1163–78. https://doi.org/10.1111/mpp.12821
  75. 75. Backer R, Engelbrecht J, van den Berg N. Differing responses to Phytophthora cinnamomi infection in susceptible and partially resistant Persea americana (Mill.) rootstocks: a case for the role of receptor-like kinases and apoplastic proteases. Front Plant Sci. 2022;13:928176. https://doi.org/10.3389/fpls.2022.928176
  76. 76. Van den Berg N, Swart V, Backer R, Fick A, Wienk R, Engelbrecht J, et al. Advances in understanding defense mechanisms in Persea americana against Phytophthora cinnamomi. Front Plant Sci. 2021;12:636339. https://doi.org/10.3389/fpls.2021.636339
  77. 77. Engelbrecht J, Van den Berg N. Expression of defence-related genes against Phytophthora cinnamomi in five avocado rootstocks. S Afr J Sci. 2013;109(11):1–8. https://doi.org/10.1590/sajs.2013/20120058
  78. 78. Seidl MF, Van den Ackerveken G. Activity and phylogenetics of the broadly occurring family of microbial Nep1-like proteins. Annu Rev Phytopathol. 2019;57:367–86. https://doi.org/10.1146/annurev-phyto-082718-100054
  79. 79. Van den Berg N, Magagula P, Backer R, Swart V. Towards developing an integrated approach for the treatment of white root rot in commercial avocado orchards. Phytoparasitica. 2025;53(2):1–15.
  80. 80. Arjona-Girona I, López-Herrera C. First report of Rosellinia necatrix causing white root rot in mango trees in Spain. Plant Dis. 2018;102(12):2639. https://doi.org/10.1094/PDIS-01-18-0133-PDN
  81. 81. Van den Berg N, Hartley J, Engelbrecht J, Mufamadi Z, Van Rooyen Z, Mavuso Z. First report of white root rot caused by Rosellinia necatrix on Persea americana in South Africa. Plant Dis. 2018;102(9):1850. https://doi.org/10.1094/PDIS-10-17-1637-PDN
  82. 82. Cisneros-Zambrano A, Mendoza-Churape J, Contreras-Cornejo HA, Raya Montaño YA, Martínez-González CR, Raymundo T, et al. First report of Irpex rosettiformis causing white root rot in avocado trees in Michoacán, México. Plant Dis. 2024;108(3):805. https://doi.org/10.1094/PDIS-09-23-1977-PDN
  83. 83. Zumaquero A, Martínez-Ferri E, Matas AJ, Reeksting B, Olivier NA, Pliego-Alfaro F, et al. Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks. PLoS One. 2019;14(2):e0212359. https://doi.org/10.1371/journal.pone.0212359
  84. 84. Martínez-Ferri E, Moreno-Ortega G, Van den Berg N, Pliego C. Mild water stress-induced priming enhances tolerance to Rosellinia necatrix in susceptible avocado rootstocks. BMC Plant Biol. 2019;19(1):458. https://doi.org/10.1186/s12870-019-2016-3
  85. 85. Moreno-Pérez A, Barceló A, Pliego C, Martínez-Ferri E. Water relations and physiological response to water deficit of ‘Hass’ avocado grafted on two rootstocks tolerant to R. necatrix. Agronomy. 2024;14(9):1959. https://doi.org/10.3390/agronomy14091959
  86. 86. Ibarra Caballero JR, Jeon J, Lee YH, Fraedrich S, Klopfenstein NB, Kim MS, et al. Genomic comparisons of the laurel wilt pathogen, Raffaelea lauricola, and related tree pathogens highlight an arsenal of pathogenicity-related genes. Fungal Genet Biol. 2019;125:84–92. https://doi.org/10.1016/j.fgb.2019.01.012
  87. 87. Udawat P, Jha RK, Sinha D, Mishra A, Jha B. Overexpression of a cytosolic abiotic stress-responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front Plant Sci. 2016;7:518. https://doi.org/10.3389/fpls.2016.00518
  88. 88. Backer R, Naidoo S, Van den Berg N. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front Plant Sci. 2019;10:102. https://doi.org/10.3389/fpls.2019.00102
  89. 89. Jin L, Song Z, Cai F, Ruan L, Jiang R. Chemistry and biological activities of naturally occurring and structurally modified podophyllotoxins. Molecules. 2022;28(1):155. https://doi.org/10.3390/molecules28010155
  90. 90. Huang L, Zeng Y, Yang S, Zhou H, Xu J, Zhou Y, et al. Transcriptome analysis of gene expression profiles reveals wood formation mechanisms in Chinese fir at different stand ages. Heliyon. 2023;9(4):e14861. https://doi.org/10.1016/j.heliyon.2023.e14861
  91. 91. Flores-García I, Lara-Moreno M, Reyes-Ramírez A, González-Chavira M, Lara-Márquez A, Guzmán-Ortiz D, et al. Response of avocado (Persea americana) rootstocks to inoculation with Rosellinia necatrix. Rev Mex Fitopatol. 2020;38(3):519–38. https://doi.org/10.18781/R.MEX.FIT.2003-1
  92. 92. Silva-Sánchez C, Jaime-Aguilar H, López-Hernández F, Mora-Aguilera G, Téliz-Ortiz D, Zulueta-Rodríguez R, et al. Population structure of Fusarium kuroshium, the ambrosia fungus associated with the Kuroshio shot hole borer (Euwallacea kuroshio) in avocado orchards of Mexico. J Fungi. 2023;9(3):331. https://doi.org/10.3390/jof9030331
  93. 93. Tobar-Pineda G, Tovar-Puente C, Espinoza-Victoria D, Molina-Bravo R, Mora-Aguilera G, Téliz-Ortiz D. First report of Fusarium kuroshium causing canker in avocado (Persea americana) in Nayarit, Mexico. Plant Dis. 2021;105(1):204. https://doi.org/10.1094/PDIS-04-20-0942-PDN
  94. 94. Gazis R, Kostka SJ, Tellez MR, Kendra PE. Antifungal evaluation of plant essential oils for the management of Fusarium dieback in avocado. Crop Prot. 2020;136:105227. https://doi.org/10.1016/j.cropro.2020.105227
  95. 95. Bostock RM, Ploetz RC, Prusky D, Adaskaveg JE. The relationship between latent infections and postharvest diseases: The case of Colletotrichum species. Phytopathology. 1999;89(6):556–62. https://doi.org/10.1094/PHYTO.1999.89.6.556
  96. 96. Arauz LF. Mango anthracnose: Economic impact and current options for integrated management. Plant Dis. 2000;84(6):600–11. https://doi.org/10.1094/PDIS.2000.84.6.600
  97. 97. Freeman S, Katan T, Shabi E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 1998;82(6):596–605. https://doi.org/10.1094/PDIS.1998.82.6.596
  98. 98. Guarnaccia V, Groenewald JZ, Polizzi G, Crous PW. High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia. 2017;38:209–18. https://doi.org/10.3767/003158517X696453
  99. 99. Mosca S, Rinaldi A, González-Domínguez E, Cacciola SO, Schena L. The Colletotrichum complex: Genomic and host specialization insights in the avocado pathosystem. J Fungi. 2022;8(2):126. https://doi.org/10.3390/jof8020126
  100. 100. Evans EA, Ballen FH, Crane JH. An overview of global avocado production and trade. UF/IFAS Extension, University of Florida. 2010. https://edis.ifas.ufl.edu/publication/FE913

Downloads

Download data is not yet available.