Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Chemical composition and bioactive compounds of Opuntia ficus-indica fruits in Ninh Thuan province, Vietnam

DOI
https://doi.org/10.14719/pst.8836
Submitted
12 April 2025
Published
26-11-2025

Abstract

This study presents the first comprehensive analysis of the chemical composition and bioactive compounds of Opuntia ficus-indica fruits cultivated in Ninh Thuan province, Vietnam in 2024. Key findings include a free acid content of 136.7 ± 5.77 mEq/kg, mineral content of 21.8 ± 0.05 %, total sugar content of 10.7 ± 0.06 %, reducing sugar content of 10.48 ± 0.1 %, lipid content of 1.624 ± 0.02 %, protein content of 1.619 ± 0.04 % and crude fiber content of 2.53 ± 0.06 %. These values indicate their potential as a nutrient-dense food source. In addition, the extraction of bioactive compounds was optimized using response surface methodology (RSM). Under the optimal conditions of 59.13 °C, 96.43 min and a liquid-to-material ratio of 46.5 mL/g, the total phenolic content (TPC) and total flavonoid content (TFC) reached 15.355 ± 0.028 mg gallic acid equivalents (GAE)/g dry weight (DW) and 2.404 ± 0.0428 mg quercetin equivalents (QE)/g DW, respectively. The polynomial models applied were shown to be effective in predicting and maximizing yields. Overall, the findings underscore the nutritional richness and bioactive potential of O. ficus-indica fruits, offering a scientific basis for their development into functional foods and nutraceuticals. This work provides novel insights into the value-added utilization of cactus fruits from Vietnam, contributing to both human health promotion and sustainable agricultural practices.

References

  1. 1. Abbas EY, Ezzat MI, El Hefnawy HM, Abdel-Sattar E. An overview and update on the chemical composition and potential health benefits of Opuntia ficus-indica (L.) Miller. J Food Biochem. 2022;46(11):e14310. https://doi.org/10.1111/jfbc.14310
  2. 2. Mondragón-Jacobo C, Pérez-González S. Food and Agriculture Organization of the United Nations. Cactus (Opuntia spp.) as forage. Rome: Food and Agriculture Organization of the United Nations; 2001.
  3. 3. Piga A. Cactus pear: a fruit of nutraceutical and functional importance. J Prof Assoc Cactus Dev. 2004;6:1-10.
  4. 4. Martins M, Ribeiro MH, Miranda A, Lopes S, Franco R, Paiva J, et al. New foods with history: nutritional and toxic profile of prickly pear. J Food Meas Charact. 2023;17(1):956-72. https://doi.org/10.1007/s11694-022-01680-z
  5. 5. Mohamed-Yasseen Y, Barringer SA, Splittstoesser WE. A note on the uses of Opuntia spp. in Central/North America. J Arid Environ. 1996;32(3):347-54. https://doi.org/10.1006/jare.1996.0028
  6. 6. Cota-Sánchez JH. Nutritional composition of the prickly pear (Opuntia ficus-indica) fruit. In: Simmonds MSJ, Preedy VR, editors. Nutritional composition of fruit cultivars. San Diego: Academic Press; 2016. p. 691-712. https://doi.org/10.1016/B978-0-12-408117-8.00028-3
  7. 7. El-Mostafa K, El Kharrassi Y, Badreddine A, Andreoletti P, Vamecq J, El Kebbaj M, et al. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules. 2014;19(9):14879-901. https://doi.org/10.3390/molecules190914879
  8. 8. Clark WD, Brown GK, Mays RL. Flower flavonoids of Opuntia subgenus Cylindropuntia. Phytochemistry. 1980;19(9):2042-3. https://doi.org/10.1016/0031-9422(80)83039-1
  9. 9. Ha Q, Nguyen K, Anh L, Thi Hoan V, Tuan N. Opuntia ficus-indica (L.): an overview of the recent application and opportunities in food. Trop J Nat Prod Res. 2024;8:5734-45. https://doi.org/10.26538/tjnpr/v8i1.3
  10. 10. Ameer K, Chun B-S, Kwon J-H. Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling. Ind Crops Prod. 2017;109:672-85. https://doi.org/10.1016/j.indcrop.2017.09.023
  11. 11. Jiang G, Wu Z, Ameer K, Song C. Physicochemical, antioxidant, microstructural, and sensory characteristics of biscuits as affected by addition of onion residue. J Food Meas Charact. 2021;15(1):817-25. https://doi.org/10.1007/s11694-020-00681-0
  12. 12. Trinh NTN, Tuan NN, Thang TD, Kuo PC, Thanh NB, Tam LN, et al. Chemical composition analysis and antioxidant activity of Coffea robusta monofloral honeys from Vietnam. Foods. 2022;11(3):1-10. https://doi.org/10.3390/foods11030388
  13. 13. Vietnamese Standards Institute. Vietnamese Standard TCVN 3703:2009: Aquatic products and aquatic product derivatives – determination of fat content – Soxhlet method. Hanoi: Vietnamese Standards Institute; 2009.
  14. 14. Vietnamese Standards Institute. Vietnamese Standard TCVN 8099-1:2009 (ISO 8968-1:2001) Milk – determination of nitrogen content – part 1: Kjeldahl method. Hanoi: Vietnamese Standards Institute; 2009.
  15. 15. Horwitz W, Chichilo P, Reynolds H. Official methods of analysis of the Association of Official Analytical Chemists. 11th ed. Washington (DC): Association of Official Analytical Chemists; 1970.
  16. 16. Izadiyan P, Hemmateenejad B. Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design. Food Chem. 2016;190:864-70. https://doi.org/10.1016/j.foodchem.2015.06.036
  17. 17. Scroccarello A, Della Pelle F, Neri L, Pittia P, Compagnone D. Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples. Food Res Int. 2019;119:359-68. https://doi.org/10.1016/j.foodres.2019.02.006
  18. 18. Xu J. Plants as a promising biofactory for bioactive compounds. Basel: MDPI; 2023. https://doi.org/10.3390/books978-3-0365-9464-4
  19. 19. AsokKumar K, UmaMaheswari M, Sivashanmugam AT, SubhadraDevi V, Subhashini N, Ravi TK. Free radical scavenging and antioxidant activities of Glinus oppositifolius (carpet weed) using different in vitro assay systems. Pharm Biol. 2009;47(6):474-82. https://doi.org/10.1080/13880200902817901
  20. 20. Patil K, Dagadkhair A. Physicochemical characteristics and antioxidant potential of Opuntia fruit: a review. Pharma Innov J. 2019;8(6):376-80.
  21. 21. Sawaya WN, Khatchadourian HA, Safi WM, Al-Muhammad HM. Chemical characterization of prickly pear pulp, Opuntia ficus-indica, and the manufacturing of prickly pear jam. Int J Food Sci Technol. 1983;18(2):183-93. https://doi.org/10.1111/j.1365-2621.1983.tb00259.x
  22. 22. Hamad D, El-Shawaf A, Soliman M, El-Makhzangy A. Chemistry and functional properties of bioactive compounds present in prickly pear fruits. Egypt J Chem. 2024;67(9):359-70.
  23. 23. Valero-Galván J, González-Fernández R, Sigala-Hernández A, Núñez-Gastélum JA, Ruiz-May E, Rodrigo-García J, et al. Sensory attributes, physicochemical and antioxidant characteristics, and protein profile of wild prickly pear fruits (O. macrocentra Engelm., O. phaeacantha Engelm., and O. engelmannii Salm-Dyck ex Engelmann) and commercial prickly pear fruits (O. ficus-indica (L.) Mill.). Food Res Int. 2021;140:109909. https://doi.org/10.1016/j.foodres.2020.109909
  24. 24. Medina EMD, Rodríguez EMR, Romero CD. Chemical characterization of Opuntia dillenii and Opuntia ficus-indica fruits. Food Chem. 2007;103(1):38-45. https://doi.org/10.1016/j.foodchem.2006.06.064
  25. 25. Yilmaz Y, Toledo RT. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J Food Compos Anal. 2006;19(1):41-8. https://doi.org/10.1016/j.jfca.2004.10.009
  26. 26. Nguyen KP, Nguyen HT, Dao XTT, Nguyen KK, Nguyen TN, Nguyen TT. Optimization of extraction condition and the antioxidant activity of Momordica charantia leaves from Vietnam. Trop J Nat Prod Res. 2025;9(1):73-8.
  27. 27. Vajić UJ, Grujić-Milanović J, Živković J, Šavikin K, Gođevac D, Miloradović Z, et al. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind Crops Prod. 2015;74:912-7. https://doi.org/10.1016/j.indcrop.2015.06.032
  28. 28. Tan M, Tan C. Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int Food Res J. 2013;20:3117-23.

Downloads

Download data is not yet available.