Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Genomic insights into the antifungal and plant growth promoting traits of Pseudomonas plecoglossicida NAN2 isolated from the rice rhizosphere

DOI
https://doi.org/10.14719/pst.8862
Submitted
14 April 2025
Published
25-06-2025 — Updated on 01-07-2025
Versions

Abstract

Plant growth promoting rhizobacteria (PGPRs) are beneficial microorganisms that inhabit the rhizosphere and enhance plant growth through various mechanisms. In this study, a PGPR strain designated NAN2 was isolated from the rice rhizosphere and demonstrated multiple plant growth-promoting traits, including the production of hydrogen cyanide (HCN), ammonia, indole-3-acetic acid (IAA), phosphate solubilization and antifungal activity against Magnaporthe oryzae. Complete genome sequencing and annotation of strain NAN2 revealed a genome size of 5356785 base pairs (bp) with a GC content of 62 %, comprising 227 contigs, 4807 coding sequences (CDSs) and a total of 4960 genes. Notably, the genome contains a nonribosomal peptide synthetase (NRPS) gene cluster associated with the biosynthesis of rhizomides (A, B and C). These results suggest that NAN2 has strong potential as an environmentally resilient biocontrol agent that can protect plants from invasive diseases. To our knowledge, this is the first genomic analysis of Pseudomonas plecoglossicida NAN2 isolated from rice fields, providing valuable insights into its biocontrol capabilities and plant growth promoting (PGP) properties.

References

  1. 1. Stallworth S, Shrestha S, Schumaker B, Roma-Burgos N, Tseng TM. Screening diverse weedy rice (Oryza sativa spp.) mini germplasm for tolerance to heat and complete submergence stress during seedling stage. Front Agron. 2021;5;3:642335. https://doi.org/10.3389/fagro.2021.642335
  2. 2. Martín-Cardoso H, Bücker G, Busturia I, San Segundo B. Unravelling mechanisms underlying phosphate-induced susceptibility to bakanae disease in rice. Plant Stress. 2025;100766. https://doi.org/10.1016/j.stress.2025.100766
  3. 3. Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, et al. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front Microbiol. 2021;12:670135. https://doi.org/10.3389/fmicb.2021.670135
  4. 4. Casu A, Camardo Leggieri M, Toscano P, Battilani P. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Compr Rev Food Sci Food Saf. 2024;23(2):e13323. https://doi.org/10.1111/1541-4337.13323
  5. 5. Fei L, Hafeez R, Zhang J, Fu S, Xu Y, Hao L. Investigation of the mechanisms involved in the biocontrol activities of natural products from a marine soil bacterium against rice blast. Pest Manag Sci. 2025;81:3122–3135. https://doi.org/10.1002/ps.8684
  6. 6. Law JW, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, et al. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017;8:3. https://doi.org/10.3389/fmicb.2017.00003
  7. 7. Chakraborty M, Mahmud NU, Ullah C, Rahman M, Islam T. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae. Crit Rev Biotechnol. 2021;41(7):994-1022. https://doi.org/10.1080/07388551.2021.1898325
  8. 8. Fasusi OA, Cruz C, Babalola OO. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture. 2021;11(2):163. https://doi.org/10.3390/agriculture11020163
  9. 9. Howard RJ, Valent B. Breaking and entering: Host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol. 1996;50(1):491-512. https://doi.org/10.1146/annurev.micro.50.1.491
  10. 10. Hyun Khang C, Valent B. Magnaporthe oryzae and rice blast disease. In: Borkovich KA, Ebbole DJ, editors. Cellular and molecular biology of filamentous fungi. Wiley; 2010. p. 591-606. https://doi.org/10.1128/9781555816636.ch37
  11. 11. Li Y, Hu B, Wang Z, He J, Zhang Y, Wang J, et al. Identification of pyruvate dehydrogenase E1 as a potential target against Magnaporthe oryzae through experimental and theoretical investigation. Int J Mol Sci. 2021;22(10):5163. https://doi.org/10.3390/ijms22105163
  12. 12. Spago FR, Mauro CI, Oliveira AG, Beranger JP, Cely MV, Stanganelli MM, et al. Pseudomonas aeruginosa produces secondary metabolites that have biological activity against plant pathogenic Xanthomonas species. Crop Prot. 2014;62:46-54. https://doi.org/10.1016/j.cropro.2014.04.011
  13. 13. Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, et al. Biological control of plant pathogens: A global perspective. Microorganisms. 2022;10(3):596. https://doi.org/10.3390/microorganisms10030596
  14. 14. Bessai SA, Corrêa A, Cruz C, Yadav AN, Nabti E. Plant growth promoting microbes as biofertilizers: Promising solutions for sustainable agriculture under climate change associated abiotic stresses. Plant Sci Today. 2021;8:60-76. https://doi.org/10.14719/pst.1608
  15. 15. El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, et al. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front Plant Sci. 2022;13:923880. https://doi.org/10.3389/fpls.2022.923880
  16. 16. Jiao X, Takishita Y, Zhou G, Smith DL. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci. 2021;12:634796. https://doi.org/10.3389/fpls.2021.634796
  17. 17. Mawarda PC, Le Roux X, Van Elsas JD, Salles JF. Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem. 2020;148:107874. https://doi.org/10.1016/j.soilbio.2020.107874
  18. 18. Suleimanova AD, Sokolnikova LV, Egorova EA, Berkutova ES, Pudova DS, Khilyas IV, et al. Antifungal activity of siderophore isolated from Pantoea brenneri against Fusarium oxysporum. Russ J Plant Physiol. 2023;70(8):199. https://doi.org/10.1134/S1021443723602744
  19. 19. Md Gulzar AB, Mazumder PB. Plant growth promoting phyllobacteria: An effective tool for sustainable agriculture. Russ J Plant Physiol. 2023;70(8):196. https://doi.org/10.1134/S1021443723602355
  20. 20. Choudhury D, Tarafdar S, Dutta S. Plant growth promoting rhizobacteria (PGPR) and their eco-friendly strategies for plant growth regulation: A review. Plant Sci Today. 2022;9(3):524-37. https://doi.org/10.14719/pst.1604
  21. 21. Kloepper JW, Schroth MN, Miller TD. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology. 1980;70(11):1078-82.
  22. 22. Goswami M, Deka S. Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens. Microbiol Res. 2020;240:126516. https://doi.org/10.1016/j.micres.2020.126516
  23. 23. Sah S, Krishnani S, Singh R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr Res Microb Sci. 2021;2:100084. https://doi.org/10.1016/j.crmicr.2021.100084
  24. 24. Boricha H, Fulekar MH. Pseudomonas plecoglossicida as a novel organism for the bioremediation of cypermethrin. Biol Med. 2009;1:1–10.
  25. 25. Kaur G, Reddy MS. Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). J Gen Appl Microbiol. 2013;59(4):295-303. https://doi.org/10.2323/jgam.59.295
  26. 26. Bakker AW, Schippers BO. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp - mediated plant growth-stimulation. Soil Biol Biochem. 1987;19(4):451-57. https://doi.org/10.1016/0038-0717(87)90037-X
  27. 27. Cappuccino JG, Sherman N. Microbiology: A laboratory manual. San Francisco: Pearson/Benjamin Cummings; 2005.
  28. 28. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26(1):192.
  29. 29. Pikovskaya RI. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya. 1948;17:362-70.
  30. 30. Chukeatirote E, Phueaouan T, Piwkam A. Screening of rhizosphere soil bacteria for biocontrol of Lasiodiplodia theobromae. Agric Nat Resour. 2018;52(4):325-29. https://doi.org/10.1016/j.anres.2018.10.009
  31. 31. Zhu H, Zhou H, Ren Z, Liu E. Control of Magnaporthe oryzae and rice growth promotion by Bacillus subtilis JN005. J Plant Growth Regul. 2021;41:2319-27. https://doi.org/10.1007/s00344-021-10444-w
  32. 32. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  33. 33. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  34. 34. Madden T. The BLAST sequence analysis tool. The NCBI handbook. 2013;2(5):425-36.
  35. 35. Modi A, Vai S, Caramelli D, Lari M. The illumina sequencing protocol and the NovaSeq 6000 system. In: Clifton NJ, editor. Methods in molecular biology. New York; Springer. 2021. p. 15-42. https://doi.org/10.1007/978-1-0716-1099-2_2
  36. 36. Andrews S. Fast QC: A quality control tool for high throughput sequence data. 2010.
  37. 37. Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-90. https://doi.org/10.1093/bioinformatics/bty560
  38. 38. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):104355. http://www.genome.org/cgi/doi/10.1101/gr.186072.114
  39. 39. Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-69. https://doi.org/10.1093/bioinformatics/btu153
  40. 40. Grant JR, Arantes AS, Stothard P. Comparing thousands of circular genomes using the CGView comparison tool. BMC Genomics. 2012;13:1-8. https://doi.org/10.1186/1471-2164-13-202
  41. 41. Grissa I, Vergnaud G, Pourcel C. CRISPR finder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35(suppl_2):W52-57. https://doi.org/10.1093/nar/gkm360
  42. 42. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34(8):2115-22. https://doi.org/10.1093/molbev/msx148
  43. 43. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726-31. https://doi.org/10.1016/j.jmb.2015.11.006
  44. 44. Blin K, Pascal Andreu V, de los Santos EL, Del Carratore F, Lee SY, Medema MH, et al. The antiSMASH database version 2: A comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 2019;47(D1):D625-30. https://doi.org/10.1093/nar/gky1060
  45. 45. Patz S, Gautam A, Becker M, Ruppel S, Rodríguez-Palenzuela P, Huson DH. PLaBAse: A comprehensive web resource for analyzing the plant growth-promoting potential of plant-associated bacteria. BioRxiv. 2021:2021-12. https://doi.org/10.1101/2021.12.13.472471
  46. 46. Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: Their role, colonization, mechanisms involved and prospects forutilization. Soil Biol Biochem. 2010;42(5):669-78. https://doi.org/10.1016/j.soilbio.2009.11.024
  47. 47. Gopalakrishnan S, Humayun P, Kiran BK, Kannan IG, Vidya MS, Deepthi K, et al. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol. 2011;27:1313-21. https://doi.org/10.1007/s11274-010-0579-0
  48. 48. Xu SJ, Hong SJ, Choi W, Kim BS. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol J. 2014;30(1):102. https://doi.org/10.5423/PPJ.OA.05.2013.0052
  49. 49. Singh S, Singh UB, Trivedi M, Sahu PK, Paul S, Paul D, et al. Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. Int J Environ Res Public Health. 2020;17(1):253. https://doi.org/10.3390/ijerph17010253
  50. 50. Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MD, Glick BR. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology. 2021;27;10(6):475. https://doi.org/10.3390/biology10060475
  51. 51. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, et al. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol. 2020:67-83. https://doi.org/10.1038/s41579-019-0299-x
  52. 52. Wang X, Zhou H, Chen H, Jing X, Zheng W, Li R, et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc Natl Acad Sci. 2018;115(18):E4255-63. https://doi.org/10.1073/pnas.1720941115

Downloads

Download data is not yet available.