Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Molecular mechanisms of the phytoimmune system against Fusarium oxysporum f.sp. vasinfectum and Verticillium dahliae in cotton plants

DOI
https://doi.org/10.14719/pst.8872
Submitted
15 April 2025
Published
22-10-2025
Versions

Abstract

Fusarium oxysporum f.sp. vasinfectum (FOV) and Verticillium dahliae occupy a special place among the pathogenic fungi that affect plant productivity, causing annually serious damage to the yield, fiber quality, morpho-biological and agronomic properties of the cotton plants. Therefore, the study of the complex molecular processes that occur between the pathogen and the plant remains one of the most important tasks. This requires molecular geneticists and breeders to fully understand the defense mechanism that has emerged in cotton plants against pathogens and to be able to apply it correctly in practice. To combat pathogenic fungi, a thorough analysis of the natural defense mechanisms of plants, including miRNA, transcription factors (TFs), quantitative trait loci (QTL), regulatory functions of plant cell membranes and proteins, may be of great importance. In this paper, we reviewed the research conducted in recent years to identify miRNAs, TFs and QTLs participating in the defense mechanism against FOV and V. dahliae. This review provides insight to understand research aimed at reducing and controlling the future economic damage caused by pathogenic fungi. Studying those factors by using modern genomic technologies together with OMICS studies has accelerated research in this discipline. As a result, the integration of various methods has emerged, developing new approaches such as multi-omics. Integrating these promising methodologies will enhance our comprehension of the molecular mechanisms underlying wilt resistance in cotton plants, leading to the development of novel resistant varieties.

References

  1. 1. Statista. Leading cotton-producing countries worldwide in 2022/2023 [Internet]. 2023. [cited 2025 Aug 26]. Available from: https://www.statista.com/statistics/263055/cotton-production-worldwide-by-top-countries/
  2. 2. Liu T, Chen T, Kan J, Yao Y, Guo D, Yang Y, et al. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnol J. 2022;20(4):722–35. https://doi.org/10.1111/pbi.13751
  3. 3. Davis RM, Colyer PD, Rothrock CS, Kochman JK. Fusarium wilt of cotton: population diversity and implications for management. Plant Dis. 2006;90(6):692–703. https://doi.org/10.1094/PD-90-0692
  4. 4. Zhang J, Abdelraheem A, Zhu Y, Wheeler TA, Dever JK, Elkins-Arce H, et al. Pedigree selection under field conditions within Acala 1517–08 and its glandless derivatives for development of cotton resistant to Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum race 4. Euphytica. 2020;216:155. https://doi.org/10.1007/s10681-020-02691-x
  5. 5. Xiao-Ping Hu, Gurung S, Short DPG, Sandoya GV, Shang W-J, Hayes RJ, et al. Nondefoliating and defoliating strains from cotton correlate with Races 1 and 2 of Verticillium dahliae. Plant Dis. 2015;99(12):1713–20. https://doi.org/10.1094/PDIS-03-15-0261-RE
  6. 6. Li X, Zhang Y, Ding C, Xu W, Wang X. Temporal patterns of cotton Fusarium and Verticillium wilt in Jiangsu coastal areas of China. Sci Rep. 2017;7:12581. https://doi.org/10.1038/s41598-017-12985-1
  7. 7. Mo HJ, Sun YX, Zhu XL, Wang XF, Zhang Y, Yang J, et al. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signalling in the defence response to Verticillium dahliae. Planta. 2016;243(4):1023–39. https://doi:10.1007/s00425-015-2463-5
  8. 8. Langenbach C, Campe R, Schaffrath U, Goellner K, Conrath U. UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol. 2013;198(2):536–45. https://doi:10.1111/nph.12155
  9. 9. Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL. The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol. 2011;52(11):1873–3. https://doi:10.1093/pcp/pcr136
  10. 10. Gao W, Long L, Zhu LF, Xu L, Gao WH, Sun LQ, et al. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics. 2013;12(12):3690–3. https://doi:10.1074/mcp.M113.031013
  11. 11. Ulloa M, Hutmacher R, Zhang J, Schramm TL, Roberts P, Ellis ML, et al. Registration of 17 upland cotton germplasm lines with improved resistance to Fusarium wilt race 4 and good fiber quality. J Plant Regist. 2023;17:152–63. https://doi.org/10.1002/plr2.20258
  12. 12. Zhu Y, Abdelraheem A, Lujan P, Idowu J, Sullivan P, Nichols R, et al. Detection and characterization of Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) Race 4 causing Fusarium wilt of cotton seedlings in New Mexico. Plant Dis. 2021;105(11):3353–67. doi.org/10.1094/PDIS-10-20-2174-RE
  13. 13. Gong Q, Yang Z, Wang X, Butt HI, Chen E, He S, et al. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae. BMC Plant Biol. 2017;17(1):59. https://doi.org/10.1186/s12870-017-1007-5
  14. 14. Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. Mol Plant Pathol. 2018;19(7):1624–38. https://doi.org/10.1111/mpp.12635
  15. 15. Liu N, Sun Y, Pei Y, Zhang X, Wang P, Li X, et al. A pectin methylesterase inhibitor enhances resistance to Verticillium wilt. Plant Physiol. 2018;176(3):2202–20. https://doi.org/10.1104/pp.17.01399
  16. 16. Jones DA, Takemoto D. Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol. 2004;16(1):48–62. https://doi.org/10.1016/j.coi.2003.11.016
  17. 17. Ayubov MS, Mirzakhmedov MH, Sripathi VR, Buriev ZT, Ubaydullaeva KA, Usmonov DE, et al. Role of MicroRNAs and small RNAs in regulation of developmental processes and agronomic traits in Gossypium species. Genomics. 2019;111(5):1018–25. https://doi.org/10.1016/j.ygeno.2018.07.012
  18. 18. Zhou B, Gao X, Zhao F. Integration of mRNA and miRNA analysis reveals the post-transcriptional regulation of salt stress response in Hemerocallis fulva. Int J Mol Sci. 2023;24(8):7290. https://doi.org/10.3390/ijms24087290
  19. 19. Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot. 2011;62(2):487–95. https://doi.org/10.1093/jxb/erq295
  20. 20. Shapulatov UM, Buriev ZT, Ulloa M, Saha S, Devor EJ, Ayubov MS, et al. Characterization of small RNAs and their targets from Fusarium oxysporum infected and noninfected cotton root tissues. Mol Biol Rep. 2015;34(3):698–70. https://doi.org/10.1007/s11105-015-0945-z
  21. 21. Wang C, He X, Wang X, Zhang S, Guo X. Ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. J Exp Bot. 2017;68:(21–22): 5895–906. https://doi.org/10.1093/jxb/erx373
  22. 22. He X, Sun Q, Jiang H, Zhu X, Mo J, Long L, et al. Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing. Springerplus. 2014;3:564. https://doi.org/10.1186/2193-1801-3-564
  23. 23. Mei J, Wu Y, Niu Q, Miao M, Zhang D, Zhao Y, et al. Integrative analysis of expression profiles of mRNA and microRNA provides insights of cotton response to Verticillium dahliae. Int J Mol Sci. 2022;23(9):4702. https://doi.org/10.3390/ijms23094702
  24. 24. Zhang Y, Wang W, Chen J, Liu J, Xia M, Shen F. Identification of miRNAs and their targets in cotton inoculated with Verticillium dahliae by high-throughput sequencing and degradome analysis. Int J Mol Sci. 2015;16(7):14749–68. https://doi.org/10.3390/ijms160714749
  25. 25. Yin Z, Li Y, Han X, Shen F. Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PloS One. 2012;7(4):e35765. https://doi.org/10.1371/journal.pone.0035765
  26. 26. Hu G, Ge X, Wang P, Chen A, Li F, Wu J. The cotton miR171a-SCL6 module mediates plant resistance through regulating GhPR1 expression. Plant Physiol Biochem. 2023;202:107995. https://doi.org/10.1016/j.plaphy.2023.107995
  27. 27. Wu P, Lu C, Wang B, Zhang F, Shi L, Xu Y, et al. Cotton RSG2 mediates plant resistance against Verticillium dahliae by miR482b regulation. Biology. 2023;12(7):898. https://doi.org/10.3390/biology12070898
  28. 28. Hu G, Lei Y, Liu J, Hao M, Zhang Z, Tang Y, et al. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahliae. Plant Sci. 2020;293:110438. https://doi.org/10.1016/j.plantsci.2020.110438
  29. 29. Hu G, Hao M, Wang L, Liu J, Zhang Z, Tang Y, et al. The cotton miR477-CBP60A module participates in plant defence against Verticillium dahliae. Mol Plant Microbe Interact. 2020;33(4):624–36. https://doi.org/10.1094/MPMI-10-19-0302-R
  30. 30. Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants. 2016b;2(10):16153. https://doi.org/10.1038/nplants.2016.153
  31. 31. Shi G, Wang S, Wang P, Zhan J, Tang Y, Zhao G, et al. Cotton miR393-TIR1 module regulates plant defense against Verticillium dahliae via auxin perception and signaling. Front Plant Sci. 2022;13:888703. https://doi.org/10.3389/fpls.2022.888703
  32. 32. Wei T, Tang Y, Jia P, Zeng Y, Wang B, Wu P, et al. A cotton lignin biosynthesis gene, GhLAC4, fine-tuned by ghr-miR397 modulates plant resistance against Verticillium dahliae. Front Plant Sci. 2021;12:743795. https://doi.org/10.3389/fpls.2021.743795
  33. 33. Jia P, Tang Y, Hu G, Quan Y, Chen A, Zhong N, et al. Cotton miR319b-Targeted TCP4-like enhances plant defense against Verticillium dahliae by activating GhICS1 Transcription Expression. Front Plant Sci. 2022;13:870882. https://doi.org/10.3389/fpls.2022.870882
  34. 34. Zhu Q, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS One. 2013; 8:e84390. https://doi.org/10.1371/journal.pone.0084390
  35. 35. Pei Y, Zhu Y, Jia Y, Ge X, Li X, Li F, et al. Molecular evidence for the involvement of cotton GhGLP2 in enhanced resistance to Verticillium and Fusarium Wilts and oxidative stress. Sci Rep. 2020;10:12510. https://doi.org/10.1038/s41598-020-68943-x
  36. 36. Su Z, Jiao Y, Jiang Z, Liu P, Chen Q, Qu Y, et al. GBSOT4 enhances the resistance of Gossypium barbadense to Fusarium oxysporum f. sp. vasinfectum (FOV) by regulating the content of flavonoids. plants (Basel). 2023;12(20):3529. https://doi.org/10.3390/plants12203529
  37. 37. Li Z, Wang X, Cui Y, Qiao K, Zhu L, Fan S, et al. Comprehensive genome-wide analysis of the thaumatin-like gene family in four cotton species and functional identification of GhTLP19 involved in regulating tolerance to Verticillium dahliae and Drought. Front Plant Sci. 2020;11:575015. https://doi.org/10.3389/fpls.2020.575015
  38. 38. Yan Z, Xingfen W, Wei R, Jun Y, Zhiying M. Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation. Front Plant Sci. 2016;7:1830. https://doi.org/10.3389/fpls.2016.01830
  39. 39. Shi H, Liu Z, Zhu L, Zhang C, Chen Y, Zhou Y, et al. Overexpression of the cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim Biophys Sin (Shanghai). 2012;44(7):555–64. https://doi.org/10.1093/abbs/gms035
  40. 40. Wang P, Zhou L, Jamieson P, Zhang L, Zhao Z, Babilonia K, et al. The cotton wall-associated kinase GhWAK7A mediates responses to fungal wilt pathogens by complexing with the chitin sensory receptors. Plant Cell. 2020;32(12):3978–4001. https://doi.org/10.1105/tpc.19.00950
  41. 41. Xu J, Xu X, Tian L, Wang G, Zhang X, Wang X, et al. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Sci Rep. 2016; 6:29022. https://doi.org/10.1038/srep29022
  42. 42. Han LB, Li YB, Wang FX, Wang WY, Liu J, Wu JH, et al. The Cotton apoplastic protein crr1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliae. Plant Cell. 2019;31(2):520–36. https://doi.org/10.1105/tpc.18.00390
  43. 43. Xu J, Wang G, Wang J, Li Y, Tian L, Wang X, et al. The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC Plant Biol. 2017;17(1):148. https://doi.org/10.1186/s12870-017-1096-1
  44. 44. Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, et al. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. Plant Cell. 2021;33(12):3675–99. https://doi.org/10.1093/plcell/koab221
  45. 45. Xiao S, Hu Q, Shen J, Liu S, Yang Z, Chen K, et al. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. Plant Cell Rep. 2021;40(4):735-51. https://doi.org/10.1007/s00299-021-02672-x
  46. 46. Mao H, Zhang W, Lv J, Yang J, Yang S, Jia B, et al. Overexpression of cotton Trihelix transcription factor GhGT-3b_A04 enhances resistance to Verticillium dahliae and affects plant growth in Arabidopsis thaliana. J Plant Physiol. 2023;283:153947. https://doi.org/10.1016/j.jplph.2023.153947
  47. 47. Xiong XP, Sun SC, Zhang XY, Li YJ, Liu F, Zhu QH, et al. GhWRKY70D13 regulates resistance to Verticillium dahliae in cotton through the ethylene and jasmonic acid signalling pathways. Front Plant Sci. 2020;11:1045. https://doi.org/10.3389/fpls.2020.01045
  48. 48. Zhang S, Dong L, Zhang X, Fu X, Zhao L, Wu L, et al. The transcription factor GhWRKY70 from Gossypium hirsutum enhances resistance to Verticillium wilt via the jasmonic acid pathway. BMC Plant Biol. 2023;23(1):141. https://doi.org/10.1186/s12870-023-04141-x
  49. 49. Mi X, Li W, Chen C, Xu H, Wang G, Jin X, et al. GhMPK9-GhRAF39_1-GhWRKY40a regulates the GhERF1b- and GhABF2-mediated pathways to increase cotton disease resistance. Adv Sci (Weinh). 2024;11(29):e2404400. https://doi.org/10.1002/advs.202404400
  50. 50. Li Y, Chen H, Wang Y, Zhu J, Zhang X, Sun J, et al. Function analysis of GhWRKY53 regulating cotton resistance to Verticillium wilt by JA and SA signaling pathways. Front Plant Sci. 2023;14:1203695. https://doi.org/10.3389/fpls.2023.1203695
  51. 51. Liu JF, Lei Y, Zhang ZN, Hu G, Tang Y, Zhang N, et al. Resistance of GhWRKY48 negatively regulated cotton against Verticillium dahliae. Acta Agric Bor Sin. 2019;34:99–105. https://doi.org/10.7668/hbnxb.201751632
  52. 52. Hu Q, Xiao S, Wang X, Ao C, Zhang X, Zhu L. GhWRKY1-like enhances cotton resistance to Verticillium dahliae via an increase in defense-induced lignification and S monolignol content. Plant Sci. 2021;305:110833. https://doi.org/10.1016/j.plantsci.2021.110833
  53. 53. Ma Q, Wang N, Ma L, Lu J, Wang H, Wang C, et al. The cotton BEL1-like transcription factor GhBLH7-D06 negatively regulates the defense response against Verticillium dahliae. Int J Mol Sci. 2020;27;21(19):7126. https://doi.org/10.3390/ijms21197126
  54. 54. Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J. 2011;66(2):293–305. https://doi.org/10.1111/j.1365-313X.2011.04491.x
  55. 55. Chen J, Li N, Ma X, Gupta VK, Zhang D, Li T, et al. The ectopic overexpression of the cotton Ve1 and Ve2-homolog sequences leads to resistance response to Verticillium wilt in Arabidopsis. Front Plant Sci. 2017;29;8:844. https://doi.org/10.3389/fpls.2017.00844
  56. 56. Qin J, Wang K, Sun L, Xing H, Wang S, Li L, et al. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. Elife. 2018;7:e34902. https://doi.org/10.7554/eLife.34902
  57. 57. Bai S, Niu Q, Wu Y, Xu K, Miao M, Mei J. Genome-wide identification of the NAC transcription factors in Gossypium hirsutum and analysis of their responses to Verticillium wilt. Plants (Basel). 2022;11(19):2661. https://doi.org/10.3390/plants11192661
  58. 58. Wang W, Yuan Y, Yang C, Geng S, Sun Q, Long L, et al. Characterization, expression and functional analysis of a novel NAC gene associated with resistance to Verticillium wilt and abiotic stress in cotton. G3 (Bethesda). 2016;6(12):3951–61. https://doi.org/10.1534/g3.116.034512
  59. 59. Zhao P, Qin T, Chen W, Sang X, Zhao Y, Wang H. Genome-wide study of NOT2_3_5 protein subfamily in cotton and their necessity in resistance to verticillium wilt. Int J Mol Sci. 2021;22(11):5634. https://doi.org/10.3390/ijms22115634
  60. 60. Liu F, Cai S, Ma Z, Yue H, Xing L, Wang Y, et al. RVE2, a new regulatory factor in the jasmonic acid pathway, orchestrates resistance to Verticillium wilt. Plant Biotechnol J. 2023;21(12):2507–24. https://doi.org/10.1111/pbi.14149
  61. 61. Peng S, Li P, Li T, Tian Z, Xu R. GhCNGC13 and 32 act as critical links between growth and immunity in cotton. Int J Mol Sci. 2023;25(1):1. https://doi.org/10.3390/ijms25010001
  62. 62. Zhang M, Wang X, Yang J, Wang Z, Chen B, Zhang X, et al. GhENODL6 Isoforms from the phytocyanin gene family regulated Verticillium wilt resistance in cotton. Int J Mol Sci. 2022;23(6):2913. https://doi.org/10.3390/ijms23062913
  63. 63. Zhu Y, Thyssen GN, Abdelraheem A, Teng Z, Fang DD, Jenkins JN, et al. GWAS identified a major QTL for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a MAGIC population of Upland cotton and a meta-analysis of QTLs for Fusarium wilt resistance. Theor Appl Genet. 2022;135(7):2297–312. https://doi.org/10.1007/s00122-022-04113-z
  64. 64. Han W, Zhao J, Deng X, Gu A, Li D, Wang Y, et al. Quantitative trait locus mapping and identification of candidate genes for resistance to Fusarium wilt race 7 using a resequencing-based high-density genetic bin map in a recombinant inbred line population of Gossypium barbadense. Front Plant Sci. 2022;13:815643. https://doi.org/10.3389/fpls.2022.815643
  65. 65. Wang Y, Zhao J, Chen Q, Zheng K, Deng X, Gao W, et al. Quantitative trait locus mapping and identification of candidate genes for resistance to Verticillium wilt in four recombinant inbred line populations of Gossypium hirsutum. Plant Sci. 2023;327:111562. https://doi.org/10.1016/j.plantsci.2022.111562
  66. 66. Abdelraheem A, Zhu Y, Zhang J. Quantitative trait locus mapping for Fusarium wilt race 4 resistance in a recombinant inbred line population of Pima cotton (Gossypium Barbadense). Pathogens. 2022;11(10):1143. https://doi.org/10.3390/pathogens11101143
  67. 67. Zhang J, Abdelraheem A, Ma J, Zhu Y, Dever J, Wheeler TA, et al. Mapping of dynamic QTLs for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a backcross inbred line population of Upland cotton. Mol Genet Genomics. 2022;297(2):319–32. https://doi.org/10.1007/s00438-021-01846-2
  68. 68. Cui Y, Ge Q, Zhao P, Chen W, Sang X, Zhao Y, et al. Rapid mining of candidate genes for Verticillium wilt resistance in cotton based on BSA-Seq analysis. Front Plant Sci. 2021;12:703011. https://doi.org/10.3389/fpls.2021.70301
  69. 69. Abdelraheem A, Elassbli H, Zhu Y, Kuraparthy V, Hinze L, Stelly D, et al. A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton. Theor Appl Genet. 2020;133(2):563–577. https://doi.org/10.1007/s00122-019-03487-x
  70. 70. Wilson IW, Moncuquet P, Yuan Y, Soliveres M, Li Z, Stiller W, et al. Genetic mapping and characterization of Verticillium wilt resistance in a recombinant inbred population of upland cotton. Int J Mol Sci. 2024;25(4):2439. https://doi.org/10.3390/ijms25042439
  71. 71. Rashid MHO, Li PT, Chen TT, Palanga KK, Gong WK, Ge Q, et al. Genome-wide quantitative trait loci mapping on Verticillium wilt resistance in 300 chromosome segment substitution lines from Gossypium hirsutum × Gossypium barbadense. G3 (Bethesda). 2021;11(5):jkab027. https://doi.org/10.1093/g3journal/jkab027
  72. 72. Wang C, Ulloa M, Duong T, Roberts PA. Quantitative trait loci mapping of multiple independent loci for resistance to Fusarium oxysporum f. sp. vasinfectum races 1 and 4 in an interspecific cotton population. Phytopathology. 2018;108(6):759–67. https://doi.org/10.1094/phyto-06-17-0208-r
  73. 73. Zhao J, Liu J, Xu J, Zhao L, Wu Q, Xiao S. Quantitative trait locus mapping and candidate gene analysis for Verticillium wilt resistance using Gossypium barbadense chromosomal segment introgressed line. Front Plant Sci. 2018;9:682. https://doi.org/10.3389/fpls.2018.00682
  74. 74. Palanga KK, Jamshed M, Rashid MHO, Gong J, Li J, Iqbal MS, et al. Quantitative trait locus mapping for Verticillium wilt resistance in an upland cotton recombinant inbred line using SNP-based high-density genetic map. Front Plant Sci. 2017;8:382. https://doi.org/10.3389/fpls.2017.00382
  75. 75. Ulloa M, Hutmacher RB, Roberts PA, Wright SD, Nichols RL, Michael Davis R. Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton. Theor Appl Genet. 2013;126(5):1405–18. https://doi.org/10.1007/s00122-013-2061-5
  76. 76. Lopez-Lavalle LAB, Gillespie VJ, Tate WA, Ellis MH, Stiller WN, Llewellyn DL, et al. Molecular mapping of a new source of Fusarium wilt resistance in tetraploid cotton (Gossypium hirsutum L.). Mol Breeding. 2012;30:1181–91 https://doi.org/10.1007/s11032-012-9705-z
  77. 77. Wang P, Su L, Qin L, Hu B, Guo W, Zhang T. Identification and molecular mapping of a Fusarium wilt resistant gene in upland cotton. Theor Appl Genet. 2009;119(4):733–9. https://doi.org/10.1007/s00122-009-1084-4
  78. 78. Shi Y, Zhang B, Liu A, Li W, Li J, Lu Q, et al. Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense. BMC Genomics. 2016;17(1):877. https://doi.org/10.1186/s12864-016-3128-x

Downloads

Download data is not yet available.