Research Articles
Vol. 13 No. 1 (2026)
Drought-induced regulation of chalcone synthase activity in cress (Lepidium sativum L.) leaves
Department of Biological Science, Faculty of Science, Mutah University, Mutah 61710, P.O. Box(7), Jordan
Department of Biological Science, Faculty of Science, Mutah University, Mutah 61710, P.O. Box(7), Jordan
Department of Biological Science, Faculty of Science, Mutah University, Mutah 61710, P.O. Box(7), Jordan
Abstract
Drought is a major abiotic stressor that severely limits plant growth and development. In response, plants often enhance the biosynthesis of flavonoids, key secondary metabolites that contribute to growth regulation and stress adaptation. This study investigated the drought tolerance mechanisms of cress (Lepidium sativum) by examining the effects of varying drought durations on growth parameters, stress severity and associated metabolic responses. The results showed that drought stress significantly impaired plant growth, with shoot and root lengths reduced to 0.7- and 0.8-fold of control levels, respectively, after 4 days of water deficit. Prolonged drought (12 days) further decreased relative water content (RWC), reaching 0.8-fold in shoots and 0.6-fold in roots. Stress severity, assessed by relative electrolyte conductivity, exhibited a nine-fold increase after 12 days, indicating considerable membrane damage. Biochemical analyses revealed a time-dependent increase in total flavonoid content, which rose by 1.3-, 1.6- and 1.4-fold after 4, 8 and 12 days of drought exposure, respectively. Anthocyanin content increased modestly by 1.6-fold after 12 days of drought. Chalcone synthase (CHS) activity increased markedly, by 1.9- and 2.7-fold after 4 and 8 days, respectively, indicating its early induction as a critical drought response. Overall, these findings underscore the importance of CHS activation and flavonoid accumulation in enhancing drought resilience in cress. Further studies should focus on identifying individual flavonoid compounds and clarifying their role in maintaining membrane integrity under prolonged drought conditions.
References
- 1. Sharma S, Agarwal N. Nourishing and healing prowess of garden cress (Lepidium sativum Linn.) – a review. Indian J Nat Prod Resour. 2011;2(3):292-7.
- 2. Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiol Plant. 2008;132(2):199-208. https://doi.org/10.1111/j.1399-3054.2007.01025.x
- 3. Rejeb IB, Pastor V, Mauch-Mani B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants. 2014;3(4):458-75. https://doi.org/10.3390/plants3040458
- 4. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1-14. https://doi.org/10.1007/s00425-003-1105-5
- 5. Velázquez FS, Hernández VEB. Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C, editors. Abiotic stress – plant responses and applications in agriculture. IntechOpen; 2013. p. 25-47.
- 6. Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C R Biol. 2008;331(1):42-7. https://doi.org/10.1016/j.crvi.2007.11.003
- 7. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Dordrecht: Springer; 2009. p.153-88. https://doi.org/10.1007/978-90-481-2666-8_12
- 8. Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci. 2011;180(5):672-8. https://doi.org/10.1016/j.plantsci.2011.01.009
- 9. Thomashow MF. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. Arabidopsis. Vol. 27. Cold Spring Harbor Monograph Archive; 1994. p. 807-34.
- 10. Janská A, Maršík P, Zelenková S, Ovesná J. Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol. 2010;12(3):395-405. https://doi.org/10.1111/j.1438-8677.2009.00299.x
- 11. Yadav SK. Cold stress tolerance mechanisms in plants: a review. Agron Sustain Dev. 2010;30:515-27. https://doi.org/10.1051/agro/2009050
- 12. Cui ZH, Bi WL, Hao XY, Li PM, Duan Y, Walker MA, et al. Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leafroll-associated virus 3-infected in vitro grapevine (Vitis vinifera) leaves. Plant Dis. 2017;101(9):1606-15. https://doi.org/10.1094/PDIS-01-17-0104-RE
- 13. Dao TTH, Linthorst HJM, Verpoorte R. Chalcone synthase and its functions in plant resistance. Phytochem Rev. 2011;10(3):397-412. https://doi.org/10.1007/s11101-011-9211-7
- 14. Kamjad Y, Kettipok S, Chaochaiphat T, Wongpanya R, Promboon A, Pornsiriwong Phonphoem W. Effects of drought stress on anthocyanin accumulation in mulberry fruits. Asian J Plant Sci. 2021;20:450-60. https://doi.org/10.3923/ajps.2021.450.460
- 15. Hussein MM, Safinaz SZ. Influence of water stress on photosynthetic pigments of some fenugreek varieties. J Appl Sci Res. 2013;9(8):5238-45.
- 16. Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, et al. Drought stress in plants: a review on morphological characteristics and pigment composition. Int J Agric Biol. 2009;11(1):100-5.
- 17. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11:163. https://doi.org/10.1186/1471-2229-11-163
- 18. Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 2002;25(2):163-71. https://doi.org/10.1046/j.0016-8025.2001.00790.x
- 19. Ashraf MFMR, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59(2):206-16. https://doi.org/10.1016/j.envexpbot.2005.12.006
- 20. Ahmed U, Rao MJ, Qi C, Xie Q, Noushahi HA, Yaseen M, et al. Expression profiling of flavonoid biosynthesis genes and secondary metabolite accumulation in Populus under drought stress. Molecules. 2021;26(18):5546. https://doi.org/10.3390/molecules26185546
- 21. Shojaie B, Mostajeran A, Ghanadian M. Flavonoid dynamic responses to different drought conditions in roots and shoots of Arabidopsis thaliana. Turk J Biol. 2016;40(3):612-22. https://doi.org/10.3906/biy-1505-2
- 22. Sims D, Gamon J. Relationships between leaf pigment content and spectral reflectance across species. Remote Sens Environ. 2002;81:337-54. https://doi.org/10.1016/S0034-4257(02)00010-X
- 23. Ghasemzadeh A, Ashkani S, Baghdadi A, Pazoki A, Jaafar HZ, Rahmat A. Improvement in flavonoids and phenolic acids in sweet basil (Ocimum basilicum) by ultraviolet-B irradiation. Molecules. 2016;21(9):1203. https://doi.org/10.3390/molecules21091203
- 24. Su L, Dai Z, Li S, Xin H. A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biol. 2015;15:82. https://doi.org/10.1186/s12870-015-0459-8
- 25. Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, et al. Chilling and drought stresses in crop plants. Front Plant Sci. 2018;9:393. https://doi.org/10.3389/fpls.2018.00393
- 26. Shao L, Shu Z, Sun SL, Peng CL, Wang XJ, Lin ZF. Antioxidation of anthocyanins in photosynthesis under high temperature stress. J Integr Plant Biol. 2007;49(9):1341-51. https://doi.org/10.1111/j.1744-7909.2007.00527.x
- 27. Kubra G, Khan M, Munir F, Gul A, Shah T, Hussain A, et al. Expression characterization of flavonoid biosynthetic genes in peanut under water deficit. Front Plant Sci. 2021;12:680368. https://doi.org/10.3389/fpls.2021.680368
- 28. Litvin AG, van Iersel MW, Malladi A. Drought stress reduces stem elongation and alters gibberellin-related gene expression in tomato. J Am Soc Hortic Sci. 2016;141(6):591-7. https://doi.org/10.21273/JASHS03913-16
- 29. Lalay G, Ullah A, Iqbal N, Raza A, Asghar MA, Ullah S. The alleviation of drought-induced damage to growth and physio-biochemical parameters of Brassica napus L. genotypes using an integrated approach of biochar amendment and PGPR application. Environ Dev Sustain. 2022;26:3457-80. https://doi.org/10.1007/s10668-022-02841-2
- 30. Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, et al. Drought stress impacts on plants and approaches to alleviate its effects. Plants. 2021;10(2):259. https://doi.org/10.3390/plants10020259
- 31. Moharramenjad S, Sofalian O, Asghari A, Valizadeh M. Response of maize to field drought stress. Pak J Bot. 2019;51(3):799-807. https://doi.org/10.30848/PJB2019-3(1)
- 32. Liu T, Li T, Zhang L, Li H, Liu S, Yang S, et al. Salicylic acid alleviates pesticide-induced oxidative stress in cucumber (Cucumis sativus). Ecotoxicol Environ Saf. 2021;208:111654. https://doi.org/10.1016/j.ecoenv.2020.111654
- 33. Liu M, Li X, Liu Y, Cao B. Regulation of flavanone 3-hydroxylase in Reaumuria soongorica. Plant Physiol Biochem. 2013;73:161-7. https://doi.org/10.1016/j.plaphy.2013.09.016
- 34. Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186(4):786-93. https://doi.org/10.1111/j.1469-8137.2010.03269.x
- 35. Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, et al. Diverse physiological roles of flavonoids in plant stress tolerance. Plants. 2022;11(22):3158. https://doi.org/10.3390/plants11223158
- 36. Talbi S, Rojas JA, Sahrawy M, Rodríguez-Serrano M, Cárdenas KE, Debouba M, et al. Effect of drought on Oudeneya africana. Environ Exp Bot. 2020;176:104099. https://doi.org/10.1016/j.envexpbot.2020.104099
- 37. Gao S, Wang Y, Yu S, Huang Y, Liu H, Chen W, et al. Effects of drought stress on two Adonis species. Sci Hortic. 2020;259:108795. https://doi.org/10.1016/j.scienta.2019.108795
- 38. Landi M, Tattini M, Gould KS. Multiple roles of anthocyanins in plant–environment interactions. Environ Exp Bot. 2015;119:4-17. https://doi.org/10.1016/j.envexpbot.2015.05.012
- 39. Cirillo V, D’Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, et al. Anthocyanins regulate drought tolerance in tobacco. Biology. 2021;10(2):139. https://doi.org/10.3390/biology10020139
- 40. Ibrahim MH, Nulit R, Sakimin SZ. Influence of drought stress on strawberry (Fragaria × ananassa). AIMS Agric Food. 2022;7(1):37-60. https://doi.org/10.3934/agrfood.2022003
- 41. Kaur S, Tiwari V, Kumari A, Chaudhary E, Sharma A, Ali U, et al. Protective role of anthocyanins under plant stress. J Biotechnol. 2022;361:12-29. https://doi.org/10.1016/j.jbiotec.2022.11.009
- 42. Liu J, Qiu G, Liu C, Li H, Chen X, Fu Q, et al. Salicylic acid combats abiotic stresses in plants. Life. 2022;12(6):886. https://doi.org/10.3390/life12060886
- 43. Qu X, Wang H, Chen M, Liao J, Yuan J, Niu G. Drought-induced changes in oil tea cultivars. J Am Soc Hortic Sci. 2019;144(6):439-47. https://doi.org/10.21273/JASHS04775-19
- 44. Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. Metabolomics and proteomics of drought-stressed wheat. Sci Rep. 2018;8:24012. https://doi.org/10.1038/s41598-018-24012-y
- 45. Ma D, Sun D, Wang C, Li Y, Guo T. Flavonoid biosynthesis in wheat under drought stress. Plant Physiol Biochem. 2014;80:60-6. https://doi.org/10.1016/j.plaphy.2014.03.024
- 46. Hou Q, Li S, Shang C, Wen Z, Cai X, Hong Y, et al. Chalcone synthase genes in sweet cherry under drought stress. Front Plant Sci. 2022;13:989959. https://doi.org/10.3389/fpls.2022.989959
- 47. Wang Y, Liu W, Li W, Wang C, Dai H, Xu R, et al. Flavonoid biosynthesis in soybean under salt stress. Front Plant Sci. 2024;15:1415867. https://doi.org/10.3389/fpls.2024.1415867
- 48. Chen M, Wang X, Zhou X, Huang B, Zhao Y, Liu H, et al. Abiotic stress-induced changes in Tetrastigma hemsleyanum. BMC Plant Biol. 2024;24:1260. https://doi.org/10.1186/s12870-024-05975-9
- 49. Zhou B, Zheng B, Wu W. ncRNAs in regulation of stress-induced anthocyanin biosynthesis. Antioxidants. 2023;13(1):55. https://doi.org/10.3390/antiox13010055
- 50. Yang L, Zhang S, Chu D, Wang X. Evolution of the CHS gene family in plants. Front Genet. 2024;15:1368358. https://doi.org/10.3389/fgene.2024.1368358
- 51. Zhang X, Abrahan C, Colquhoun TA, Liu CJ. A regulator controlling chalcone synthase stability in Arabidopsis. Plant Cell. 2017;29(5):1157-74. https://doi.org/10.1105/tpc.16.00855
Downloads
Download data is not yet available.