Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Antimicrobial potential of Moringa oleifera: Phytochemicals, mechanisms and nanotechnology applications

DOI
https://doi.org/10.14719/pst.8893
Submitted
15 April 2025
Published
26-11-2025

Abstract

Antibiotic resistance is increasing rapidly and is a major health problem worldwide. As a result, researchers are actively investigating safe and superior alternative therapeutic agents. Medicinal plants contain a wide array of bioactive compounds have found certain viability for such a purpose. Moringa oleifera is among such medicinal plants that exhibit several pharmacological features and are receiving attention for their antibiotic potential, represented by broad-spectrum antimicrobial action. The present review article emphasizes the antimicrobial potential of M. oleifera, highlighting the phytochemical profile, antibacterial mechanisms and its usage in the green synthesis of nanomaterials. The mentioned plant has a varied range of bioactive compounds e.g., flavonoids, glucosinolates, phenolic acids, alkaloids, sterols and terpenes that provide broad-spectrum antimicrobial activity by interfering with cell wall physiology, inhibiting protein synthesis and interfering with DNA replication. It has strong anti-quorum sensing and antibiofilm properties in addition to its direct antibacterial effects. The green synthesis of nanoparticles using M. oleifera has also been explored as a non-toxic and sustainable method of producing new antimicrobial materials. Overall, M. oleifera is a natural antibacterial agent that shows great promise and has a variety of therapeutic uses. Besides, antivirulence and nanotechnology approaches provide creative answers to address the rising issues of antibiotic resistance in current medicine.

References

  1. 1. Owusu E, Ahorlu MM, Afutu E, Akumwena A, Asare GA. Antimicrobial activity of selected medicinal plants from a Sub-Saharan African country against bacterial pathogens from post-operative wound infections. Med Sci. 2021;9(2):23. https://doi.org/10.3390/medsci9020023
  2. 2. Kebede T, Gadisa E, Tufa A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: a possible alternative in the treatment of multidrug-resistant microbes. PLoS One. 2021;16(3):e0249253. https://doi.org/10.1371/journal.pone.0249253
  3. 3. Tissot F, Cuadrado M, Santander J, Torres J, Machado I. Nutritional and antioxidant properties of South American Moringa stenopetala. Brazilian J Anal Chem. 2023;10(41):443–50. https://doi.org/10.30744/brjac.2179-3425.AR-125-2022
  4. 4. Eilert U, Wolters B, Nahrstedt A. The antibiotic principle of seeds of Moringa oleifera and Moringa stenopetala. Planta Med. 1981;42(5):55–61. https://doi.org/10.1055/s-2007-971546
  5. 5. Al-Dabbas MM. Antioxidant activity of different extracts from the aerial part of Moringa peregrina (Forssk.) Fiori, from Jordan. Pak J Pharm Sci. 2017;30(6).
  6. 6. Boopathi NM, Abubakar BY. Botanical descriptions of Moringa spp. 2021. p. 11–20. https://doi.org/10.1007/978-3-030-80956-0_2
  7. 7. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci. 2015;16(6):12791–835. https://doi.org/10.3390/ijms160612791
  8. 8. Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, et al. Bioactive compounds in Moringa oleifera: mechanisms of action, focus on their anti-inflammatory properties. Plants. 2023;13(1):20. https://doi.org/10.3390/plants13010020
  9. 9. Zarina, Wani AW, Rawat M, Kaur H, Das S, Kaur T, et al. Medicinal utilization and nutritional properties of drumstick (Moringa oleifera)—a comprehensive review. Food Sci Nutr. 2024;12(7):4546–68. https://doi.org/10.1002/fsn3.4139
  10. 10. Maiyo FC, Moodley R, Singh M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O-glucoside and 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anticancer Agents Med Chem. 2016;16(5):648–56. https://doi.org/10.2174/1871520615666151002110424
  11. 11. Saini RK, Shetty NP, Giridhar P. Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. cultivars from India by LC–APCI–MS. Eur Food Res Technol. 2014;238(6):971–8. https://doi.org/10.1007/s00217-014-2174-3
  12. 12. Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, et al. Moringa oleifera: an updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int J Mol Sci. 2023;24(3):2098. https://doi.org/10.3390/ijms24032098
  13. 13. Al-husnan LA, Alkahtani MDF. Impact of Moringa aqueous extract on pathogenic bacteria and fungi in vitro. Ann Agric Sci. 2016;61(2):247–50. https://doi.org/10.1016/j.aoas.2016.06.003
  14. 14. El-Sherbiny GM, Alluqmani AJ, Elsehemy IA, Kalaba MH. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci Rep. 2024;14(1):30485. https://doi.org/10.1038/s41598-024-80700-y
  15. 15. Upadhyay P, Mk Y, S M, Sharma P, Purohit S. Moringa oleifera: a review of the medical evidence for its nutritional and pharmacological properties. Int J Res Pharm Sci. 2015;5(2):12–6.
  16. 16. Suraka B, Ibrahim D, Suleman K, Usman U, Usman SI. Antifungal activity of Moringa oleifera leaves crude extract against Aspergillus flavus and Rhizopus stolonifer. Dutse J Pure Appl Sci. 2022;7(4b). https://doi.org/10.4314/dujopas.v7i4b.2
  17. 17. Mangundayao K, Yasurin P. Bioactivity of Moringa oleifera and its applications: a review. J Pure Appl Microbiol. 2017;11(1):43–50. https://doi.org/10.22207/JPAM.11.1.07
  18. 18. Mishra G, Singh P, Verma R, Kumar S, Srivastav S, Jha KK, et al. Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: an overview. Der Pharmacia Lettre. 2011;3:141–64.
  19. 19. Padla EP, Solis LT, Levida RM, Shen CC, Ragasa CY. Antimicrobial isothiocyanates from the seeds of Moringa oleifera Lam. Zeitschrift für Naturforsch C. 2012;67:557. https://doi.org/10.1515/znc-2012-11-1205
  20. 20. Al-Khalasi SS, Al-Ghafri AS, Al-Saqri AN, Al-Jahdhami HA, Al-Badi AM. Comparative study between Moringa peregrina plant extracts and a standard antibiotic against Candida albicans. Open Access Res J Sci Technol. 2023;9(2):22–38. https://doi.org/10.53022/oarjst.2023.9.2.0065
  21. 21. Vankwani S, Ansari A, Azhar A, Galani S. Synergistic evaluation of Moringa oleifera extract and β-lactam antibiotic to restore the susceptibility of methicillin-resistant Staphylococcus aureus. Mol Biol Rep. 2022;49(1):421–32. https://doi.org/10.1007/s11033-021-06889-7
  22. 22. Stohs SJ, Hartman MJ. Review of the safety and efficacy of Moringa oleifera. Phyther Res. 2015;29(6):796–804. https://doi.org/10.1002/ptr.5325
  23. 23. Saini RK, Sivanesan I, Keum YS. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech. 2016;6(2):203. https://doi.org/10.1007/s13205-016-0526-3
  24. 24. Huang W, Wang Y, Tian W, Cui X, Tu P, Li J, et al. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics. 2022;11(10):1380. https://doi.org/10.3390/antibiotics11101380
  25. 25. Zhou H, Xu M, Guo W, Yao Z, Du X, Chen L, et al. The antibacterial activity of kaempferol combined with colistin against colistin-resistant Gram-negative bacteria. Microbiol Spectr. 2022;10(6). https://doi.org/10.1128/spectrum.02265-22
  26. 26. Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E. Isothiocyanates: an overview of their antimicrobial activity against human infections. Molecules. 2018;23(3):624. https://doi.org/10.3390/molecules23030624
  27. 27. Juszczuk-Kubiak E. Molecular aspects of the functioning of pathogenic bacteria biofilm based on quorum sensing signal-response system and innovative non-antibiotic strategies for their elimination. Int J Mol Sci. 2024;25(5):2655. https://doi.org/10.3390/ijms25052655
  28. 28. Jonnalagadda S, Deshabathini UK. Anti quorum sensing potential of Moringa oleifera seed extract. Int J Pharm Pharm Sci. 2016;8(1):76–82.
  29. 29. Suhartono S, Ismail YS, Muhayya SR. The interference of Moringa oleifera leaf extracts to modulate quorum sensing-facilitated virulence factors. Biodiversitas J Biol Divers. 2019;20(10). https://doi.org/10.13057/biodiv/d201031
  30. 30. Haris Z, Ahmad I. Evaluation of antioxidant-rich bioactive plant extracts with special reference to Moringa oleifera Lam. for their interference to bacterial quorum sensing and biofilm. Phytomedicine Plus. 2024;4(2):100511. https://doi.org/10.1016/j.phyplu.2023.100511
  31. 31. Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM. Moringa seed extract alleviates titanium oxide nanoparticles-induced cerebral oxidative damage and increases cerebral mitochondrial viability. Environ Sci Pollut Res. 2020;27(16):19169–84. https://doi.org/10.1007/s11356-019-05514-2
  32. 32. Virk P, Awad MA, Saleh Abdu-llah Alsaif S, Hendi AA, Elobeid M, Ortashi K, et al. Green synthesis of Moringa oleifera leaf nanoparticles and an assessment of their therapeutic potential. J King Saud Univ Sci. 2023;35(3):102576. https://doi.org/10.1016/j.jksus.2023.102576
  33. 33. Husen A, editor. Secondary metabolites based green synthesis of nanomaterials and their applications. Singapore: Springer Nature Singapore; 2023. https://doi.org/10.1007/978-981-99-0927-8
  34. 34. Eric CA, Benjamín V, Monica C, Mario AC, Francisco DM, Rogelio AR, et al. Silver nanoparticles biosynthesized by secondary metabolites from Moringa oleifera stem and their antimicrobial properties. African J Biotechnol. 2017;16(9):400–7. https://doi.org/10.5897/AJB2016.15840
  35. 35. Katata-Seru L, Moremedi T, Aremu OS, Bahadur I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq. 2018;256:296–304. https://doi.org/10.1016/j.molliq.2017.11.093
  36. 36. Mehwish HM, Rajoka MSR, Xiong Y, Cai H, Aadil RM, Mahmood Q, et al. Green synthesis of silver nanoparticles using Moringa oleifera seed and its applications for antimicrobial and sunlight-mediated photocatalytic water detoxification. J Environ Chem Eng. 2021;9(4):105290. https://doi.org/10.1016/j.jece.2021.105290
  37. 37. Moodley JS, Krishna SBN, Pillay K, Sershen, Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol. 2018;9(1):015011. https://doi.org/10.1088/2043-6254/aaabb2
  38. 38. Sathyavathi R, Krishna MBM, Rao DN. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting. J Nanosci Nanotechnol. 2011;11(3):2031–5. https://doi.org/10.1166/jnn.2011.3581
  39. 39. Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, El-Agamy Farh M, et al. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and applications. J Nanobiotechnology. 2024;22(1):71. https://doi.org/10.1186/s12951-024-02332-8
  40. 40. Khor KZ, Joseph J, Shamsuddin F, Lim V, Moses EJ, Abdul Samad N. The cytotoxic effects of Moringa oleifera leaf extract and silver nanoparticles on human Kasumi-1 cells. Int J Nanomedicine. 2020;15:5661–70. https://doi.org/10.2147/IJN.S244834
  41. 41. Mokgweetsi P. Green synthesis of silver nanoparticles using Moringa oleifera, employing multivariate optimization methodologies. Int J Adv Res. 2018;6(7):953–62. https://doi.org/10.21474/IJAR01/7445
  42. 42. Pratiwi DE, Side S, Nisa NAT. Synthesis of silver nanoparticles using Moringa oleifera L. leaf extract as bioreductor. Mater Sci Forum. 2019;967:145–9. https://doi.org/10.4028/www.scientific.net/MSF.967.145
  43. 43. Ghosh N, Paul S, Basak P. Silver nanoparticles of Moringa oleifera – green synthesis, characterisation and its antimicrobial efficacy. J Drug Deliv Ther. 2014;4(3-s):42–6. https://doi.org/10.22270/jddt.v0i0.906
  44. 44. Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera gold nanoparticles modulate oncogenes, tumour suppressor genes, and caspase-9 splice variants in A549 cells. J Cell Biochem. 2016;117(10):2302–14. https://doi.org/10.1002/jcb.25528
  45. 45. Anand K, Gengan RM, Phulukdaree A, Chuturgoon A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anticancer and catalytic activity. J Ind Eng Chem. 2015;21:1105–11. https://doi.org/10.1016/j.jiec.2014.05.021
  46. 46. Mohammed GM, Hawar SN. Green biosynthesis of silver nanoparticles from Moringa oleifera leaves and its antimicrobial and cytotoxicity activities. Int J Biomater. 2022;2022:4136641. https://doi.org/10.1155/2022/4136641
  47. 47. Bouttier-Figueroa DC, Loreto-Romero MA, Roldan MA, González-Gutiérrez FH, Cortez-Valadez M, Flores-Acosta M, et al. Green synthesis of gold nanoparticles via Moringa oleifera seed extract: antioxidant, antibacterial and anticarcinogenic activity on lung cancer. J Environ Sci Health Part A. 2024;59(5):231–40. https://doi.org/10.1080/10934529.2024.2366736
  48. 48. Ao B, Jiang H, Cai X, Liu D, Tu J, Shi X, et al. Synthesis of tellurium nanoparticles using Moringa oleifera extract and antibacterial and antibiofilm effects against bacterial pathogens. Microorganisms. 2024;12(9):1847. https://doi.org/10.3390/microorganisms12091847
  49. 49. Hema K, Anishia SR, Rajeswari S, Padmavathy V, Sujatha S, Thiyagu M. Green synthesis and multifunctional applications of Moringa oleifera-enhanced TiO2 nanocomposites. J Environ Nanotechnol. 2025;14(1):7–17. https://doi.org/10.13074/jent.2025.03.2511225
  50. 50. Sivaranjani V, Philominathan P. Synthesize of titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med. 2016;12:1–5. https://doi.org/10.1016/j.wndm.2015.11.002
  51. 51. Nikpasand A, Parvizi MR. Evaluation of the effect of titanium dioxide nanoparticles/gelatin composite on infected skin wound healing: an animal model study. Bull Emerg Trauma. 2019;7(4):366–72. https://doi.org/10.29252/beat-070405
  52. 52. Silveira C, Shimabuku QL, Fernandes Silva M, Bergamasco R. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal. Environ Technol. 2018;39(22):2926–36. https://doi.org/10.1080/09593330.2017.1369582
  53. 53. Aisida SO, Madubuonu N, Alnasir MH, Ahmad I, Botha S, Maaza M, et al. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl Nanosci. 2020;10(1):305–15. https://doi.org/10.1007/s13204-019-01099-x
  54. 54. Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, et al. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32(21):4704–13. https://doi.org/10.1016/j.biomaterials.2011.03.039
  55. 55. Tovar GI, Briceño S, Suarez J, Flores S, González G. Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and evaluation on corn germination. Environ Nanotechnol Monit Manag. 2020;14:100350. https://doi.org/10.1016/j.enmm.2020.100350
  56. 56. Pal S, Mondal S, Maity J, Mukherjee R. Synthesis and characterization of ZnO nanoparticles using Moringa oleifera leaf extract: investigation of photocatalytic and antibacterial activity. Int J Nanosci Nanotechnol. 2018;14(2):111–9.
  57. 57. Srivastava V, Choubey AK. Kinetic and isothermal study of transition metal doping on adsorptive property of zinc oxide nanoparticles synthesized via green route using Moringa oleifera leaf extract. Mater Res Express. 2020;6(12):125017. https://doi.org/10.1088/2053-1591/ab7158
  58. 58. Irfan M, Munir H, Ismail H. Moringa oleifera gum based silver and zinc oxide nanoparticles: green synthesis, characterization and antibacterial potential against MRSA. Biomater Res. 2021;25(1):5661–70. https://doi.org/10.1186/s40824-021-00219-5
  59. 59. Kalaiyarasi C, Poonkothai M, Abirami S, Alaguprathana M, Marraiki N, Zaghloul NSS. Zinc oxide nanoparticles fabrication using Moringa oleifera Lam. seed extract: impact on phytotoxic, photocatalytic and antimicrobial activities. Appl Nanosci. 2023;13(3):2187–97. https://doi.org/10.1007/s13204-021-02113-x
  60. 60. Sahakitpichan P, Mahidol C, Disadee W, Ruchirawat S, Kanchanapoom T. Unusual glycosides of pyrrole alkaloid and 4′-hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry. 2011;72(8):791–5. https://doi.org/10.1016/j.phytochem.2011.02.021
  61. 61. Leone A, Fiorillo G, Criscuoli F, Ravasenghi S, Santagostini L, Fico G, et al. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi refugee camps and Haiti. Int J Mol Sci. 2015;16(8):18923–37. https://doi.org/10.3390/ijms160818923
  62. 62. Vongsak B, Sithisarn P, Gritsanapan W. Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J Chromatogr Sci. 2014;52(7):641–5. https://doi.org/10.1093/chromsci/bmt093
  63. 63. Habtemariam S, Varghese G. Extractability of rutin in herbal tea preparations of Moringa stenopetala leaves. Beverages. 2015;1(3):169–82. https://doi.org/10.3390/beverages1030169
  64. 64. Manguro LOA, Lemmen P. Phenolics of Moringa oleifera leaves. Nat Prod Res. 2007;21(1):56–68. https://doi.org/10.1080/14786410601035811
  65. 65. Atawodi SE, Atawodi JC, Idakwo GA, Pfundstein B, Haubner R, Wurtele G, et al. Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem and root barks of Moringa oleifera Lam. J Med Food. 2010;13(3):710–6. https://doi.org/10.1089/jmf.2009.0057
  66. 66. Amali Muhammad A, Fakurazi S, Arulselvan P, See CP, Abas F. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam. on experimentally induced diabetic animal model. Drug Des Devel Ther. 2016;2016:1715–30. https://doi.org/10.2147/DDDT.S96968
  67. 67. Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S, et al. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice. Mol Nutr Food Res. 2015;59(6):1013–24. https://doi.org/10.1002/mnfr.201400679
  68. 68. Tumer TB, Rojas-Silva P, Poulev A, Raskin I, Waterman C. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera. J Agric Food Chem. 2015;63(5):1505–13. https://doi.org/10.1021/jf505014n
  69. 69. Verma AR, Vijayakumar M, Mathela CS, Rao CV. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol. 2009;47(9):2196–201. https://doi.org/10.1016/j.fct.2009.06.005
  70. 70. Teixeira EMB, Carvalho MRB, Neves VA, Silva MA, Arantes-Pereira L. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem. 2014;147:51–4. https://doi.org/10.1016/j.foodchem.2013.09.135

Downloads

Download data is not yet available.