Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Functional proteomics in groundnut: Unveiling resistance mechanisms against stem rot using seaweed and bioinoculant

DOI
https://doi.org/10.14719/pst.8898
Submitted
15 April 2025
Published
07-09-2025

Abstract

Sclerotium rolfsii, a soil-borne fungal pathogen with a broad host range, poses a major threat to groundnut cultivation by causing stem rot disease, leading to significant yield losses. In this study, S. rolfsii and five Trichoderma spp. isolates were isolated. PCR amplification using universal fungal primers viz., ITS-1 and ITS-4 confirmed the identity of S. rolfsii via BLAST analysis, which was further validated using species-specific primers SR1-F and SR1-R. The sequence was submitted to GenBank under the accession number MZ920141. Antagonistic potential of five Trichoderma isolates was assessed, among which Trichoderma asperellum (Tr1) exhibited the highest mycelial inhibition (73.81 %) in dual culture and up to 89.11 % inhibition in poisoned food assays. Volatile metabolites from Tr1 significantly suppressed mycelial growth (67.56 %) and sclerotial production (91.22 %). Molecular identification of Tr1 via ITS and TEF1 gene sequencing confirmed it as T. asperellum, with GenBank accession number OL872253. Additionally, solvent extracts of marine macroalgae, particularly Sargassum wightii (10 %), showed potent antifungal activity (87.56 % inhibition). A pot culture study combining Tr1 and S. wightii extract significantly reduced stem rot incidence (84.93 %) and improved plant growth as well as yield parameters. Protein profiling using 2D-PAGE and MALDI-TOF analysis revealed unique expression of defense-related proteins such as Peptidyl-prolyl cis-trans isomerase, bHLH145 and 1, 8-cineole synthase in treated plants. Functional analysis indicated their involvement in auxin transport, transcriptional regulation and secondary metabolite biosynthesis, contributing to plant immune responses. These findings highlight the synergistic potential of Tr1 and marine macroalgal extracts in sustainable management of S. rolfsii, while proteomic insights provide a molecular basis for induced resistance in groundnut.

References

  1. 1. Gelaye Y, Luo H. Optimizing peanut (Arachis hypogaea L.) production: genetic Insightsinsights, climate adaptation and efficient management practices: systematic review. Plants. 2024;13(21):2988. https://doi.org/10.3390/plants13212988
  2. 2. Srivastava D, Gaur RK, Tiwari AK. Plant diseases and their management: a sustainable approach. 1st ed. New York: Apple Academic Press. 2024;556. https://doi.org/10.1201/9781032722856
  3. 3. Kumari P, Bishnoi SK, Chandra S. Assessment of antibiosis potential of Bacillus sp. against the soil-borne fungal pathogen Sclerotium rolfsii Sacc. (Athelia rolfsii (Curzi) Tu & Kimbrough). Egypt J Biol Pest Control. 2021;31:17. https://doi.org/10.1186/s41938-020-00350-w
  4. 4. Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, et al. Major biological control strategies for plant pathogens. Pathogens. 2022;11(2):273. https://doi.org/10.3390/pathogens11020273
  5. 5. Guzmán-Guzmán P, Kumar A, De Los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MdC, Fadiji AE, et al. Trichoderma species: our best fungal allies in the biocontrol of plant diseases—a Review. Plants. 2023;12(3):432. https://doi.org/10.3390/plants12030432
  6. 6. Vicente TFL, Lemos MFL, Félix R, Valentão P, Félix C. Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. J Fungi. 2021;7(12):1006. https://doi.org/10.3390/jof7121006
  7. 7. Rengasamy KRR, Mahomoodally MF, Aumeeruddy MZ, Zengin G, Xiao J, Kim DH. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem Toxicol. 2020;135:111013. https://doi.org/10.1016/j.fct.2019.111013
  8. 8. Chiquito-Contreras CJ, Meza-Menchaca T, Guzmán-López O, Vásquez EC, Ricaño-Rodríguez J. Molecular insights into plant–microbe interactions: a comprehensive review of key mechanisms. Front Biosci-Elite. 2024;16(1):9. https://doi.org/10.31083/j.fbe1601009
  9. 9. Rustagi A, Singh G, Agrawal S, Gupta PK. Proteomic studies revealing enigma of plant–pathogen interaction. In: Singh A, Singh IK, editors. Mol Asp Plant-Pathog Interact. Singapore: Springer Singapore. 2018;239–64. https://doi.org/10.1007/978-981-10-7371-7_11
  10. 10. Shamsi S, Islam MN, Hosen S, Al-Mamun Md, Chowdhury P, Momtaz MstS, et al. Morphological and molecular identification of ten plant pathogenic fungi. Bangladesh J Plant Taxon. 2019;26(2):169–77. https://doi.org/10.3329/bjpt.v26i2.44577
  11. 11. Jeeva ML, Mishra AK, Vidyadharan P, Misra RS, Hegde V. A species-specific polymerase chain reaction assay for rapid and sensitive detection of Sclerotium rolfsii. Australas Plant Pathol. 2010;39:517–23. https://doi.org/10.1071/AP10027
  12. 12. Mukhopadhyay A, Mukherjee S, Dutta S, Kanthal S, Mondal G. Evaluating the bioactivity of Trichoderma asperellum against Colletotrichum siamense and its growth-promoting effects on Aloe vera (Aloe barbadensis Mill.). Eur J Plant Pathol. 2025;172:275–89. https://doi.org/10.1007/s10658-025-03001-8
  13. 13. Sayyed KS, Apet KT, Rudrappa KB, Bhujabal VB. Bioefficacy of native Trichoderma spp against pathogenic Fusarium sp. causing wilt diseases. J Pure Appl Microbiol. 2017;11(1):401–5. https://doi.org/10.22207/JPAM.11.1.52
  14. 14. Prameela DT, Prabhakaran N, Deeba K. Development of species specific markers for the identification of Trichoderma asperellum and Trichoderma harzianum. Vegetos- Int J Plant Res. 2017;30(Suppl):94–100. https://doi.org/10.5958/2229-4473.2017.00177.X
  15. 15. Rathod SG, Singh A, Mantri VA. Ascertaining the spatiotemporal variations in seaweed assemblages associated with the endemic seaweed Ulva ovata along selected locations of the Gulf of Khambhat, India. Aquat Ecol. 2024;58:1107–27. https://doi.org/10.1007/s10452-024-10127-0
  16. 16. Veeragurunathan V, Mandal SK, Vizhi JM, Grace PG, Gurumoorthy U. Studies on seaweeds diversity along the intertidal zone of islands of Gulf of Mannar Marine Biosphere Reserve, India for policy and management recommendation. J Coast Conserv. 2022;26:28. https://doi.org/10.1007/s11852-022-00878-z
  17. 17. Goksen G. Elucidation and quantification health-promoting phenolic compounds, antioxidant properties and sugar levels of ultrasound assisted extraction, aroma compositions and amino acids profiles of macroalgae, Laurencia papillosa. Ultrason Sonochem. 2023;98:106527. https://doi.org/10.1016/j.ultsonch.2023.106527
  18. 18. Das MM, Haridas M, Sabu A. Biological control of black pepper and ginger pathogens, Fusarium oxysporum, Rhizoctonia solani and Phytophthora capsici, using Trichoderma spp. Biocatal Agric Biotechnol. 2019;17:177–83. https://doi.org/10.1016/j.bcab.2018.11.021
  19. 19. Rajasekhar S, Amaravathi Y, Vijayalakshmi RP, Vasanthi RP, Reddy NPE. Study of plant pathogen interaction in groundnut challenged with Sclerotium rolfsii by scanning electron microscopy. Int J Curr Microbiol Appl Sci. 2019;8:1031–8. https://doi.org/10.20546/ijcmas.2019.805.121
  20. 20. Henry M, Meleady P. In-gel tryptic digestion approaches for protein and proteome characterization. In: Proteomics mass spectrom. methods. Elsevier. 2024;127–37. https://doi.org/10.1016/B978-0-323-90395-0.00003-6
  21. 21. Sharma RK, Dhruj IU, Radhakrishnan T, Desai S. Genotypic diversity among Indian isolates of Sclerotium rolfsii Sacc. [teleomorph Athelia rolfsii (Curzi) Tu & Kimbrough] based on ITS region of ribosomal DNA. Int J Curr Microbiol Appl Sci. 2018;7:1324–33. https://doi.org/10.20546/ijcmas.2018.709.158
  22. 22. Mahadevakumar S, Tejaswini GS, Janardhana GR, Yadav V. First Report of Sclerotium rolfsii causing southern blight and leaf spot on common bean (Phaseolus vulgaris ) in India. Plant Dis. 2015;99(9):1280. https://doi.org/10.1094/PDIS-01-15-0125-PDN
  23. 23. Lee DJ, Choi Y-J. Development of a novel multiplex TaqMan probe qPCR assay distinguishing dikaryotic ITS rDNA types of Sclerotium rolfsii (=Agroathelia rolfsii) and S. delphinii. Plant Dis. 2024. https://doi.org/10.1094/pdis-01-24-0250-sr
  24. 24. Tanjila N, Islam S, Akhter MdS, Hossain MdM, Alam MS, Begum F. Characterization of Sclerotium rolfsii causing foot rot: a severe threat of betel vine cultivation in Bangladesh. 3 Biotech. 2024;14:58. https://doi.org/10.1007/s13205-023-03890-8
  25. 25. Eliassaint A, Mora-Romero GA, Camacho-Tapia M, Correia KC, Cota-Barreras CI, Gonzalez-Concha LF, et al. Characterization of Trichoderma spp. and their antagonistic activity against soilborne fungi associated with chickpea wilt in Sinaloa, Mexico. Can J Plant Pathol. 2025;47(1):12–25. https://doi.org/10.1080/07060661.2024.2413956
  26. 26. Liu Y, Chen P, Song X, Wang W, Liu T. A novel Trichoderma semiorbis strain FJ059 exhibiting sclerotium-mycoparasitic ability and biocontrol potential to southern blight caused by Sclerotium rolfsii. Plant Pathol. 2025:74:1256–65. https://doi.org/10.1111/ppa.14088
  27. 27. Maurya MK, Srivastava M, Harshita. Effect of various pH levels on the growth and sporulation of Trichoderma viride isolates and assessing their antagonistic activity against soil-borne pathogens. J Pure Appl Microbiol. 2024;18(4):2516–27. https://doi.org/10.22207/jpam.18.4.23
  28. 28. Kumari R, Kumar V, Arukha AP, Rabbee MF, Ameen F, Koul B. Screening of the biocontrol efficacy of potent Trichoderma strains against Fusarium oxysporum f.sp. ciceri and Scelrotium rolfsii causing wilt and collar rot in chickpea. Microorganisms. 2024;12(7):1280. https://doi.org/10.3390/microorganisms12071280
  29. 29. Matas-Baca MÁ, García CU, Pérez-Álvarez S, Flores-Córdova MA, Escobedo-Bonilla CM, Magallanes-Tapia MA, et al. Morphological and molecular characterization of a new autochthonous Trichoderma sp. isolate and its biocontrol efficacy against Alternaria sp. Saudi J Biol Sci. 2022;29(4):2620–5. https://doi.org/10.1016/j.sjbs.2021.12.052
  30. 30. Hamed SM, Kamal M, Messiha NAS. Potential of algal-based products for the management of potato brown rot disease. Bot Stud. 2023;64:29. https://doi.org/10.1186/s40529-023-00402-y
  31. 31. Begum MAJ, Selvaraju P, Vijayakumar A. Evaluation of antifungal activity of seaweed extract (Turbinaria conoides) against Fusarium oxysporum. J Appl Nat Sci. 2016;8(1):60–2. https://doi.org/10.31018/jans.v8i1.747
  32. 32. Vicente TFL, Lemos MFL, Félix R, Valentão P, Félix C. Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. J Fungi. 2021;7(12):1006. https://doi.org/10.3390/jof7121006
  33. 33. Mickymaray S, Alturaiki W. Antifungal efficacy of marine macroalgae against fungal isolates from bronchial asthmatic cases. Molecules. 2018;23:3032. https://doi.org/10.3390/molecules23113032
  34. 34. Ayyandurai M, Akila R, Manonmani K, Mini ML, Vellaikumar S, Brindhadevi S, et al. Combined application of Trichoderma longibrachiatum T(SP)-20 and Trichoderma asperellum T(AR)-10 in the management of stem rot of groundnut. Legume Res. 2022;46(2):215–21. https://doi.org/10.18805/LR-4781
  35. 35. Haveri N. Studies on diversity of Sclerotium rolfsii Sacc. and induced systemic resistance in groundnut (Arachis hypogaea L.) against stem rot pathogen [PhD thesis]. Hyderabad: Professor Jayashankar Telangana State Agricultural University 2017;257.
  36. 36. Shekh MA, Mathukia RK, Dept. of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat (362 001), India, Sagarka BK, Dept. of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat (362 001), India, Chhodavadia SK, et al. Evaluation of Some Cow-based Bio-enhancers and Botanicals for Organic Cultivation of Summer Groundnut. Int J Econ Plants 2018;5:043–5. https://doi.org/10.23910/IJEP/2018.5.1.0231
  37. 37. Pérez JV, del Castillo DS, García ND. Proteomic analysis of storage proteins in Phaseolus vulgaris associated with resistance to water stress. Environ Exp Bot. 2024;228:106002. https://doi.org/10.1016/j.envexpbot.2024.106002
  38. 38. Kachhwaha S, Dhingra P, Kothari SL, Choudhary S, Jain R. Unravelling the secrets of fenugreek through integrated “omics” approach: Challenges and opportunities. Sci Hortic. 2024;328:112952. https://doi.org/10.1016/j.scienta.2024.112952
  39. 39. Gore VB, Kundan, Thombre PR, Rathod PJ, Kumar D, Narale SB. Sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis (SDS-PAGE) Characterization of Protein Fractions in Ten Peanut Bunch Type Varieties. Int J Biochem Res Rev 2024;33:60–70. https://doi.org/10.9734/ijbcrr/2024/v33i6889
  40. 40. Gao Q, Li W-X, Liu Z-H, Tie M, Gu X-J, Tanokura M, et al. Analysis of proteomics and in silico allergenicity prediction of soluble proteins in selenium-enriched peanut leaves. Food Bioprod Process. 2024;146:16–25. https://doi.org/10.1016/j.fbp.2024.04.006
  41. 41. Katam R, Basha SM, Suravajhala P, Pechan T. Analysis of peanut leaf proteome. J Proteome Res. 2010;9(5):2236–54. https://doi.org/10.1021/pr901009n
  42. 42. Jajda H, Patel DrR, Thakkar V. Purification and identification of Aspergillus niger induced novel protein from groundnut (Arachis hypogeae l.). J Cell Tissue Res 2013;13:3485–90
  43. 43. Zažímalová E, Křeček P, Skůpa P, Hoyerová K, Petrášek J. Polar transport of the plant hormone auxin – the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci. 2007;64:1621–37. https://doi.org/10.1007/s00018-007-6566-4
  44. 44. Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 2006;46:984–1008. https://doi.org/10.1111/j.1365-313x.2006.02756.x
  45. 45. Huh J-H. Biochemical, molecular and functional analysis of volatile terpene formation in Arabidopsis roots. Biol Environ Sci Chem. 2011.
  46. 46. Mohapatra PK, Sahu BB. Hormonal regulation of spikelet development. In: Panicle Architecture of Rice and its Relationship with Grain Filling. Springer, Cham.2022;187–282. https://doi.org/10.1007/978-3-030-67897-5_11
  47. 47. Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation and evolution. Plant Cell. 2015;27:20–32. https://doi.org/10.1105/tpc.114.134874
  48. 48. Niu X, Fu D. The roles of BLH transcription factors in plant development and environmental response. Int J Mol Sci. 2022;23(7):3731. https://doi.org/10.3390/ijms23073731
  49. 49. Barco B, Clay NK. Hierarchical and dynamic regulation of defense-responsive specialized metabolism by WRKY and MYB transcription factors. Front Plant Sci. 2020;10. https://doi.org/10.3389/fpls.2019.01775

Downloads

Download data is not yet available.