Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Consortial effect of bio-inoculants for the management of powdery mildew of bhendi incited by Golovinomyces cichoracearum (DC.) V.P. Heluta

DOI
https://doi.org/10.14719/pst.8899
Submitted
15 April 2025
Published
14-10-2025

Abstract

Powdery mildew of bhendi, incited by Golovinomyces cichoracearum (DC.) V.P. Heluta, results in substantial yield losses. To address this, an eco-friendly disease management strategy was developed using Ampelomyces quisqualis, Trichoderma harzianum and plant growth-promoting rhizobacteria (Bacillus subtilis). Strains AUAQ05 (A. quisqualis), AUTH02 (T. harzianum) and AUBS01 (B. subtilis) were evaluated for their efficacy against the pathogen under in vitro, pot culture and field conditions. In the in vitro spore germination assay, individual applications of AUAQ05 (84.64 %), AUTH02 (67.85 %) and AUBS01 (61.53 %) at 0.5 % concentration significantly inhibited conidial germination. Prior to combined application, the compatibility among the strains was assessed and confirmed. Under greenhouse (77.26 %) and field (71.69 %) conditions, the consortium of AUAQ05, AUTH02 and AUBS01 markedly reduced disease incidence. Additionally, field trials showed a 64.74 % increase in yield over the untreated control, surpassing the effect of individual treatments. These findings demonstrate that a compatible biocontrol consortium can serve as an effective and eco-friendly strategy for managing powdery mildew in bhendi.

References

  1. 1. Abdel-Kader MM, El-Mougy NS, Aly MDE, Lashin SM. Integration of biological and fungicidal alternatives for controlling foliar diseases of vegetables under greenhouse conditions. Int J Agric & Forest. 2012;2(2):38–48.10.5923/j.ijaf.20120202.07
  2. 2. Abdul-Baki AA anderson JD. Vigour determination in soybean seed by multiple criteria.CropSci.1973;13(6):63033. http://dx.doi.org/10.2135/cropsci1973.0011183X001300060013x
  3. 3. Ashwini R, Amaresh YS, Yenjerappa ST, Kulkarni S, Aswathanarayana DS. Studies on symptomatology, morphological and molecular characterization of Erysiphe cichoracearum causing powdery mildew of okra. Int J Environ Clim Change. 2023;13(10):2921-28.10.9734/ijecc/2023/v13i102958
  4. 4. Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V, et al. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol Biol Rep. 2021; 48:3285-3301. 10.1007/s11033-021-06321-0
  5. 5. Athira K, Ragupathi N, Raguchander T. Morphological characterization of Ampelomyces spp., a hyperparasite of Bhendi (Abelmoschus esculentus (L.) Moench) powdery mildew. J Appl Nat Sci. 2017;9(4):1954-57. 10.31018/jans.v9i4.1471
  6. 6. Ayaz M, Ali Q, Zhao W, Chi YK, Ali F, Rashid KA, et al. Exploring plant growth promoting traits and biocontrol potential of Bacillus subtilis BS-2301 strain in suppressing Sclerotinia sclerotiorum through various mechanisms. Front Plant Sci. 2024; 15:1444328. https://doi.org/10.3389/fpls.2024.1444328
  7. 7. Ayyappan S, Sruthi K, Aravind US. Isolation and characterization of antagonistic Bacillus spp. against fungal phytopathogens from rhizosphere soil of different plants in southern India. J Microbiol Biotechnol Food Sci. 2023;13(1):30-42.
  8. 8. Bacha AA, Suhail M, Awwad FA, Ismail EA, Ahmad H. Role of dietary fiber and lifestyle modification in gut health and sleep quality. Front Nutr. 2024; 11:1324793. 10.3389/fnut.2024.1324793
  9. 9. Bachihal S. Investigations on powdery mildew of okra caused by Erysiphe cichoracearum DC. (Master's thesis, University of Agricultural Sciences, Raichur); 2012.
  10. 10. Banupriya M, Ushamalini C, Nakkeeran S, Raguchander T. Morphological characterization of Ampelomyces spp., a hyperparasite of grapevine [Vitis vinifera (L.)] powdery mildew. Int J Curr Microbiol App Sci. 2019;8(06):1725-31. https://doi.org/10.20546/ijcmas.2019.806.206
  11. 11. Bélanger RR, Labbé C. Control of powdery mildews without chemicals. In: Bélanger RR, Bushnell WR, Dik AJ, TLW C, editors. The powdery mildews: a comprehensive treatise. Am Phytopathol Soc; 2002. p. 256–67. https://www.cabidigitallibrary.org/doi/full/10.5555/20023170360
  12. 12. Benuzzi M, Baldoni G. AQ10- a New Bio fungicide Based on Ampelomyces quisqualis for Powdery Mildew Control on Grapes. Intrachem Bio Italia s.r.L., Cesena,Italy; 2000. https://www.cabidigitallibrary.org/doi/full/10.5555/20001007582
  13. 13. Braun U. A monograph of the Erysiphales (powdery mildews). Nova Hedwigia. 1987; 89:1–700. https://www.cabidigitallibrary.org/doi/full/10.5555/19871337454
  14. 14. Braun U, Cook RTA. Taxonomic Manual of the Erysiphales (Powdery Mildews). ResearchGate; 2012. https://cir.nii.ac.jp/crid/1573668924100070656
  15. 15. Chowdhury SP, Hartmann A, Gao X, Borriss R. Biocontrol mechanism by Bacillus amyloliquefaciens FZB42: a review. Front Microbiol. 2015; 6:780. https://doi.org/10.3389/fmicb.2015.00780
  16. 16. Department of Agriculture, Government of Tamil Nadu. Annual Report 2021-22; 2022. https://agriwelfare.gov.in/Documents/annual-report-2021-22.pdf
  17. 17. Elad Y, Chet I, Henis Y. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica. 1981;9(1):59–67. https://link.springer.com/article/10.1007/BF03158330
  18. 18. Elad Y, Kirshner B, Yehuda N, Sztejnberg A. Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39. Biocontrol. 1998; 43:241-51. https://link.springer.com/article/10.1023/A:1009919417481
  19. 19. Fondevilla S, Rubiales D. Powdery mildew control in pea: a review. Agron Sustain Dev. 2012; 32:401-9. https://doi.org/10.1007/s13593-011-0033-1
  20. 20. Food and Agriculture Organization. Global production statistics for Bhendi; 2022. https://openknowledge.fao.org/server/api/core/bitstreams/0c372c04-8b29-4093-bba6-8674b1d237c7/content
  21. 21. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, Vicente A, Pérez-García A. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol. 2013;6(3):264–74. https://doi.org/10.1111/1751-7915.12028
  22. 22. Gireesha D, Patil PV, Vishwas Gowda GR, Vijaykumar KN, Doggalli G. Morphological and biochemical characterization of Bacillus subtilis isolated from rhizosphere of sugarbeet. Biochem Cell Arch. 2024; 24:1077-82. https://doi.org/10.51470/bca.2024.24.1.1077
  23. 23. Goh TK. Single spore isolation using a hand-made glass needle. Fungal Divers. 1999; 2:47-63.
  24. 24. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. John Wiley & Sons, New York; 1984.
  25. 25. Grace S, Salman M, Prabha D, Chauhan JS, Gupta H. To study Effect of biocontrol agents on the growth of okra (Abelmoschus esculentus (L.) Moench). Int J Chem Stud. 2019; SP6:880-5.
  26. 26. Zeledón-Castro I, Blandón Díaz JU, Romero SD, Castillo-Arévalo T. Isolation and characterization of Trichoderma spp., for their potential use in peanut (Arachis hypogaea) crops. Sch J Agric Vet Sci. 2023;10(6):57-66.
  27. 27. ISTA (International Seed Testing Association). International rules for seed testing. Seed Sci Technol. 1993;21(Suppl):1–75. https://www.seedtest.org/en/publications/international-rules-seed-testing.html
  28. 28. Jadav AH, Kadvani DL. Efficacy of different phytoextracts against Erysiphe cichoracearum DC causing powdery mildew of okra. J Pharmacogn Phytochem. 2019;8(2):538–40. https://www.phytojournal.com/archives/2019.v8.i2.7638/efficacy-of-different-phytoextracts-against-ltemgterysiphe-cichoracearum-ltemgtdc-causing-powdery-mildew-of-okra
  29. 29. Jena RK, Raja IY, Ramamoorthy V, Narayanan SL, Renuka R, Subbiah A, et al. Exploring eco-sensitive strategies for effective powdery mildew management in grapevines. J Environ Sci. 2023;57(4):301–10. DOI: 10.18311/jbc/2023/34206
  30. 30. Kanipriya R, Rajendran L, Raguchander T, Karthikeyan G. Characterization of Ampelomyces and its potentiality as an effective biocontrol agent against Erysiphe cichoracearum DC causing powdery mildew disease in bhendi (Abelmoschus esculentus (L.) Moench). Madras Agric J. 2019;106(4):325–30. doi:10.29321/MAJ 2019.000258
  31. 31. Keerthana S, Sendhilvel V, Raguchander T, Varanavasiappan S, Swarnapriya R. Diversity of powdery mildew mycoparasite A. quisqualis under natural ecosystem and its molecular characterization. Int J Plant Soil Sci. 2022;34(9):48-59. DOI: 10.9734/IJPSS/2022/v34i930913
  32. 32. Kokare NB, Saha S. Bioefficacy studies of Trichoderma asperelloides and Ampelomyces quisqualis in combination with sulphur for the management of powdery mildew of grapes. Grape Insight. 2023;144–51. https://doi.org/10.59904/gi.v2.i1.2024.25
  33. 33. Kusch S, Qian J, Loos A, Kümmel F, Spanu PD, Panstruga R. Long-term and rapid evolution in powdery mildew fungi. Mol Ecol. 2024;33(10). https://doi.org/10.1111/mec.16909
  34. 34. Legler SE, Caffi T, Benuzzi M, Ladurner E, Rossi V. New perspectives for the use of Ampelomyces-based biofungicides for effective control of powdery mildew on grapevine. In: Proceedings of the Fourth International Conference on Non-Chemical Crop Protection Methods, Lille, France; 2011. p. 546–51. https://www.cabidigitallibrary.org/doi/full/10.5555/20113378898
  35. 35. López CG, Ramírez HA, Castellanos LN. Control of Pepper Powdery mildew using Antagonistic Microorganisms. In: Biol Control. 2020. p. 385–420. https://doi.org/10.1007/978-3-030-51034-3_15
  36. 36. Manjunatha L, Singh S, Ravikumara BM, Reddy GN, Senthilkumar M. Ampelomyces. In: Beneficial Microbes in Agro-Ecology. Elsevier Inc; 2020. Chapter 44. https://doi.org/10.1016/B978-0-12-823414-3.00044-7
  37. 37. Menge D. Biological control of cashew powdery mildew using A. quisqualis Ces. J Biol Control. 2016;30. http://hdl.handle.net/123456789/4800
  38. 38. Ministry of Agriculture & Farmers Welfare. Horticultural statistics at a glance 2023; 2023.
  39. 39. Perveen R, Hussain A, Ditta A, Dar A, Aimen A, Ahmad M, et al. Growth and yield of okra exposed to a consortium of rhizobacteria with different organic carriers under controlled and natural field conditions. Horticulturae. 2022;9(1):8. https://doi.org/10.3390/horticulturae9010008
  40. 40. Piggot PJ, Hilbert DW. Sporulation of Bacillus subtilis. Curr Opin Microbiol. 2004;7(6):579–86. https://doi.org/10.1016/j.mib.2004.10.001
  41. 41. Ramakrishnan G, Jeyarajan R, Dinakaran D. Talc-based formulation of Trichoderma viride for biocontrol of Macrophomina phaseolina. J Biol Control. 1994;8(1):41–4.
  42. 42. Ravinder Reddy M. Evaluation of different methods of disease assessment and effect of some cultural practices on powdery mildew of mungbean. MSc (Ag.) Thesis andhra Pradesh Agricultural University, Hyderabad, India; 1982.
  43. 43. Sendhilvel V, Marimuthu T, Samiappan R. Talc-based formulation of Pseudomonas fluorescens-induced defense genes against powdery mildew of grapevine. Arch Phytopathol Plant Protect. 2007;40(2):81–9. https://doi.org/10.1080/03235400500321677
  44. 44. Sundaramoorthy S, Balabaskar P. Consortial effect of endophytic and plant growth promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. J Plant Pathol Microbiol. 2012;3(7). https://m.23michael.com/open-access/consortial-effect-of-endophytic-and-plant-growth-promoting-rhizobacteria-for-the-management-of-early-blight-of-tomato-incited-by-alternaria-solani-2157-7471.1000145.pdf
  45. 45. Sundheim L, Krekling T. Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. I. Scanning electron microscopy. Phytopathol Z. 1982; 104:202–10. https://www.cabidigitallibrary.org/doi/full/10.5555/19821387273
  46. 46. Thompson DC, Clarke BB, Kobayashi DY. Evaluation of bacterial antagonists for reduction of summer patch symptoms in Kentucky bluegrass. Plant Dis. 1996; 80:856–62. https://www.cabidigitallibrary.org/doi/full/10.5555/19971000546
  47. 47. Mahalakshmi S, Vijayapriya M, Pandeeswari N. Studies on developing PGPR consortium with improved shelf life. J Pharmacogn Phytochem. 2019;8(2S):545-8.
  48. 48. Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int J Mol Sci. 2022;23(4):2329. https://doi.org/10.3390/ijms23042329
  49. 49. Vimala R. Molecular and biochemical markers for characterization of Erysiphe pisi resistance in pea (Pisum sativum L.) [dissertation]. New Delhi: Indian Agricultural Research Institute; 2005.
  50. 50. Fuga CA, Lopes EA, Vieira BS, Cunha WV. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. 2016; p.526-31. http://dx.doi.org/10.15361/1984-5529.2016v44n4p526-531

Downloads

Download data is not yet available.