Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Impact of climate change on rice crop yield: challenges and solutions

DOI
https://doi.org/10.14719/pst.8910
Submitted
16 April 2025
Published
04-10-2025

Abstract

Rice is a staple food for billions of people worldwide, yet its production is increasingly threatened by the impacts of climate change. Rising temperatures, irregular precipitation patterns, increased salt and increasing frequency of extreme weather events significantly compromise both rice yield and grain quality. Key stressors such as heat induced spikelet sterility, drought-induced reduction in tillering and grainfilling, salt stress inhibiting plant growth and flooding during critical growth stages pose serious challenges to productivity. Moreover, altered climatic conditions promote pest and disease outbreaks, exacerbate soil degradation, accelerate nitrogen loss and lead to salinity build-up further diminishing agricultural output. Smallholder farmers face socioeconomic vulnerability due to limited resources, inadequate technological access and insufficient adaptive capacity. Enhancing resilience involves innovations like establishing climate-resilient rice cultivars using sophisticated breeding procedures to improve tolerance to heat, drought, flooding and salinity challenges. Precision agriculture technologies (remote sensing, drones) optimize inputs through datadriven decisions. Sustainable approaches including alternate wetting/drying, direct-seeded rice and the System of Rice Intensification, conserve water. Climate-smart farming incorporating conservation agriculture, integrated crop-livestock systems and agroforestry increases overall resilience. Facilitating smallholders' access to climate information services, finance, insurance and capacity building is vital for boosting adaptive capacity. A coordinated, multi-pronged approach incorporating research, technical solutions, policy assistance and community engagement is necessary to create resilient rice farming systems capable of withstanding climate change impacts while maintaining food security.

References

  1. 1. Zhao R, Li Y, Ma M. Mapping paddy rice with satellite remote sensing: A Review. Sustainability. 2021;13(2):503. https://doi.org/10.3390/su13020503
  2. 2. Rao N, Lawson ET, Raditloaneng WN, Solomon D, Angula MN. Gendered vulnerabilities to climate change: insights from the semi-arid regions of Africa and Asia. Clim Dev. 2019;11(1):14–26. https://doi.org/10.1080/17565529.2017.1372266
  3. 3. Arivelarasan T, Manivasagam VS, Geethalakshmi V, Bhuvaneswari K, Natarajan K, Balasubramanian M, et al. How far will climate change affect future food security? an inquiry into the irrigated rice system of peninsular India. Agriculture. 2023;13(3):551. https://doi.org/10.3390/agriculture13030551
  4. 4. Boschetti M, Busetto L, Manfron G, Laborte A, Asilo S, Pazhanivelan S, et al. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens Environ. 2017;194:347–65. https://doi.org/10.1016/j.rse.2017.03.029
  5. 5. Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529(7584):84–87. https://doi.org/10.1038/nature16467
  6. 6. Sahrawat KL. Soil fertility in flooded and non-flooded irrigated rice systems. Arch Agron Soil Sci. 2012;58(4):423–36. https://doi.org/10.1080/03650340.2010.522993
  7. 7. Cao TM, Lee SH, Lee JY. The impact of natural disasters and pest infestations on technical efficiency in rice production: a study in Vietnam. Sustainability. 2023;15(15):11633. https://doi.org/10.3390/su151511633
  8. 8. Sharma D. Achieving sustainable development nutrition targets: the challenge for South Asia. J Glob Health. 2020;10(1):010303. https://doi.org/10.7189/jogh.10.010303
  9. 9. Habib-ur-Rahman M, Ahmad A, Raza A, Hasnain MU, Alharby HF, Alzahrani YM, et al. Impact of climate change on agricultural production; Issues, challenges and opportunities in Asia. Front Plant Sci. 2022;13:925548. https://doi.org/10.3389/fpls.2022.925548
  10. 10. Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2020: Overcoming Water Challenges in Agriculture. Rome: FAO; 2020. https://doi.org/10.4060/cb1447en
  11. 11. Nagaraj RA, Geethalakshmi V, Manonmani S, Ravikumar R, Murugananthi D, Bhuvaneswari K, et al. Comprehensive insights into the risks of climatic factors on rice production and its value chain-A Review. Sustain Agric Rev. 2024;66:257–85. https://doi.org/10.1007/978-3-031-48744-9_10
  12. 12. Bera B, Bokado K. Sustainable agronomic practices to increase climate resilience in rice-based cropping system: A review. J Appl Nat Sci. 2024;16(4). https://doi.org/10.31018/jans.v16i4.5734
  13. 13. Sheehy JE, Mitchell PL, Ferrer AB. Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Res. 2006;98(2-3):151–56. https://doi.org/10.1016/j.fcr.2006.01.001
  14. 14. Bebber DP, Holmes T, Gurr SJ. The global spread of crop pests and pathogens. Glob Ecol Biogeogr. 2014;23(12):1398–407. https://doi.org/10.1111/geb.12214
  15. 15. Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012;160(4):1686–97. https://doi.org/10.1104/pp.112.208298
  16. 16. Baishakhy SD, Islam MA, Kamruzzaman M. Overcoming barriers to adapt rice farming to recurring flash floods in haor wetlands of Bangladesh. Heliyon. 2023;9(3):e14011. https://doi.org/10.1016/j.heliyon.2023.e14011
  17. 17. Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, et al. Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis. Int J Environ Res Public Health. 2018;15(5):839. https://doi.org/10.3390/ijerph15050839
  18. 18. Oelviani R, Adiyoga W, Suhendrata T, Bakti IGMY, Sutanto HA, Fahmi DA, et al. Effects of soil salinity on rice production and technical efficiency: Evidence from the northern coastal region of Central Java, Indonesia. Case Stud Chem Environ Eng. 2024;10:101010. https://doi.org/10.1016/j.cscee.2024.101010
  19. 19. Saud S, Wang D, Fahad S, Alharby HF, Bamagoos AA, Mjrashi A, et al. Comprehensive Impacts of Climate Change on Rice Production and Adaptive Strategies in China. Front Microbiol. 2022;13:926059. https://doi.org/10.3389/fmicb.2022.926059
  20. 20. Maiti A, Hasan MK, Sannigrahi S, Bar S, Chakraborti S, Mahto SS, et al. Optimal rainfall threshold for monsoon rice production in India varies across space and time. Commun Earth Environ. 2024;5(1):302. https://doi.org/10.1038/s43247-024-01414-7
  21. 21. Weerakoon W, Maruyama A, Ohba K. Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L). J Agron Crop Sci. 2008;194(2):135–40. https://doi.org/10.1111/j.1439-037X.2008.00293.x
  22. 22. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, et al. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A. 2004;101(27):9971–75. https://doi.org/10.1073/pnas.0403720101
  23. 23. Potvin C. Interactive effects of temperature and atmospheric CO2 on physiology and growth. In: Plant Responses to the Gaseous Environment: Molecular, metabolic and physiological aspects. Dordrecht: Springer; 1994. p. 39–54. https://doi.org/10.1007/978-94-011-1294-9_3
  24. 24. Webber AN, Nie GY, Long SP. Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res. 1994;39:413–25. https://doi.org/10.1007/BF00014595
  25. 25. Morita S, Yonemaru J-I, Takanashi J-i. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot. 2005;95(4):695–701. https://doi.org/10.1093/aob/mci071
  26. 26. Bates B, Kundzewicz Z, Wu S. Climate change and water: Intergovernmental Panel on Climate Change Secretariat; 2008. https://doi.org/10.1017/CBO9780511546013
  27. 27. Ficklin DL, Maxwell JT, Letsinger SL, Gholizadeh H. A climatic deconstruction of recent drought trends in the United States. Environ Res Lett. 2015;10(4):044009. https://doi.org/10.1088/1748-9326/10/4/044009
  28. 28. Bharambe KP, Shimizu Y, Kantoush SA, Sumi T, Saber M. Impacts of climate change on drought and its consequences on the agricultural crop under worst-case scenario over the Godavari River Basin, India. Clim Serv. 2023;32:100415. https://doi.org/10.1016/j.cliser.2023.100415
  29. 29. Pandey S, Bhandari H, Ding S, Prapertchob P, Sharan R, Naik D, et al. Coping with drought in rice farming in Asia: insights from a cross-country comparative study. Agric Econ. 2007;37:213–24. https://doi.org/10.1111/j.1574-0862.2007.00246.x
  30. 30. Kamoshita A, Babu RC, Boopathi NM, Fukai S. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res. 2008;109(1-3):1–23. https://doi.org/10.1016/j.fcr.2008.06.010
  31. 31. Knox J, Hess T, Daccache A, Wheeler T. Climate change impacts on crop productivity in Africa and South Asia. Environ Res Lett. 2012;7(3):034032. https://doi.org/10.1088/1748-9326/7/3/034032
  32. 32. Farooq A, Farooq N, Akbar H, Hassan ZU, Gheewala SH. A critical review of climate change impact at a global scale on cereal crop production. Agronomy. 2023;13(1):162. https://doi.org/10.3390/agronomy13010162
  33. 33. Havens K. Climate change: Effects on salinity in Florida’s estuaries and responses of oysters, seagrass and other animal and plant life. 2015. https://doi.org/10.32473/edis-sg138-2015
  34. 34. Dasgupta S, Akhter Kamal F, Huque Khan Z, Choudhury S, Nishat A. River salinity and climate change: evidence from coastal Bangladesh. In: World scientific reference on Asia and the world economy. Singapore: World Scientific; 2015. p. 205–42. https://doi.org/10.1142/9789814578622_0031
  35. 35. Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2021.
  36. 36. Dasgupta S, Hossain MM, Huq M, Wheeler D. Climate change, salinization and high-yield rice production in coastal Bangladesh. Agric Resour Econ Rev. 2018;47(1):66–89. https://doi.org/10.1017/age.2017.14
  37. 37. Tabari H, Willems P. More prolonged droughts by the end of the century in the Middle East. Environ Res Lett. 2018;13(10):104005. https://doi.org/10.1088/1748-9326/aae09c
  38. 38. Olabanji MF, Ndarana T, Davis N, Archer E. Climate change impact on water availability in the olifants catchment (South Africa) with potential adaptation strategies. Phys Chem Earth Parts A/B/C. 2020;120:102939. https://doi.org/10.1016/j.pce.2020.102939
  39. 39. Kumar SN, Aggarwal PK, Rani S, Jain S, Saxena R, Chauhan N. Impact of climate change on crop productivity in Western Ghats, coastal and northeastern regions of India. Curr Sci. 2011;101:332–41.
  40. 40. Mikova K, Makupa E, Kayumba J. Effect of climate change on crop production in Rwanda. Earth Sci. 2015;4(3):120–28. https://doi.org/10.11648/j.earth.20150403.15
  41. 41. Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, et al. Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants. 2019;8(11):508. https://doi.org/10.3390/plants8110508
  42. 42. Mthiyane P, Aycan M, Mitsui T. Strategic advancements in rice cultivation: Combating heat stress through genetic innovation and sustainable practices-A review. Stresses. 2024;4(3):452–80. https://doi.org/10.3390/stresses4030030
  43. 43. Yu J, Du T, Zhang P, Ma Z, Chen X, Cao J, et al. Impacts of High Temperatures on the Growth and Development of Rice and Measures for Heat Tolerance Regulation: A Review. Agronomy. 2024;14(12):2811. https://doi.org/10.3390/agronomy14122811
  44. 44. Nath DJ, Dutta C, Phyllei D. Effect of heat stress on rice and its management. Int J Environ Clim. 2022;12:2587–95. https://doi.org/10.9734/ijecc/2022/v12i1131251
  45. 45. Bhuiyan SI. Water management in relation to crop production: Case Study on Rice. Outlook Agric. 1992;21:293–99. https://doi.org/10.1177/003072709202100408
  46. 46. Rahman MA, Kang S, Nagabhatla N, Macnee RGD. Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh. Agric Food Secur. 2017;6(1):1–14. https://doi.org/10.1186/s40066-017-0089-5
  47. 47. Mushtaq I, Bhat TA, Sheikh TA, Wani OA, Nazir A, Fayaz S, et al. Rice-Wheat cropping system under changing climate Scenario: A review. Int J Chem Stud. 2020;8(2):1907–14. https://doi.org/10.22271/chemi.2020.v8.i2ac.9036
  48. 48. Revich B, Tokarevich N, Parkinson AJ. Climate change and zoonotic infections in the Russian Arctic. Int J Circumpolar Health. 2012;71(1):18792. https://doi.org/10.3402/ijch.v71i0.18792
  49. 49. Seidl R, Rammer W, Scheller RM, Spies TA. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model. 2012;231:87–100. https://doi.org/10.1016/j.ecolmodel.2012.02.015
  50. 50. IPPC Secretariat, FAO. Scientific review of the impact of climate change on plant pests – A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome: FAO on behalf of the IPPC Secretariat; 2021. https://doi.org/10.4060/cb4769en
  51. 51. Juroszek P, von Tiedemann A. Climate change and potential future risks through wheat diseases: a review. Eur J Plant Pathol. 2013;136:21–33. https://doi.org/10.1007/s10658-012-0144-9
  52. 52. Miedaner T, Juroszek P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor Appl Genet. 2021;134(6):1771–85. https://doi.org/10.1007/s00122-021-03807-0
  53. 53. Clements D, Ditommaso A. Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res. 2011;51(3):227–40. https://doi.org/10.1111/j.1365-3180.2011.00850.x
  54. 54. Choudhary JS, Kumari MK, Fand BB. Linking insect pest models with climate change scenarios to project against future risks of agricultural insect pests. CABI Rev. 2019(2019):1–13. https://doi.org/10.1079/PAVSNNR201914055
  55. 55. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A. 2008;105(18):6668–72. https://doi.org/10.1073/pnas.0709472105
  56. 56. Ghini R, Bettiol W, Hamada E. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol. 2011;60(1):122–32. https://doi.org/10.1111/j.1365-3059.2010.02403.x
  57. 57. Amin H, Ahsan M, Niaz A, Gul R, Nawaz S, Shah S, et al. Climate change impacts on soil properties and agricultural productivity. Biol Clin Sci Res J. 2023. https://doi.org/10.54112/bcsrj.v2023i1.618
  58. 58. Palanisami K, Kakumanu KR, Nagothu US, Ranganathan CR. Climate Change and Rice Production in India: A Way Forward. In: India Studies in Business and Economics. Singapore: Springer; 2019. p. 27–42. https://doi.org/10.1007/978-981-13-8363-2
  59. 59. Shahid M, Munda S, Khanam R, Chatterjee D, Kumar U, Satapathy BS, et al. Climate resilient rice production system: Natural resources management approach. ORYZA-An International Journal on Rice. 2021;58(Special):143–67. https://doi.org/10.35709/ory.2021.58.spl.6
  60. 60. Cohn AS, Newton P, Gil JDB, Kuhl L, Samberg LH, Ricciardi V, et al. Smallholder Agriculture and Climate Change. Annu Rev Environ Resour. 2017;42:347–75. https://doi.org/10.1146/annurev-environ-102016-060946
  61. 61. Shinde SS, Modak P, editors. Vulnerability of Indian Agriculture to Climate Change. In: Handbook of climate change and biodiversity. New Delhi: TERI Press; 2013. p. 1–25. https://doi.org/10.1016/B978-0-12-384703-4.00227-6
  62. 62. Ho TDN, Kuwornu JKM, Tsusaka TW, Nguyen LTT, Datta A. An assessment of the smallholder rice farming households’ vulnerability to climate change and variability in the Mekong delta region of Vietnam. Local Environ. 2021;26(8):948–66. https://doi.org/10.1080/13549839.2021.1937971
  63. 63. Harvey CA, Rakotobe ZL, Rao NS, Dave RB, Razafimahatratra H, Rabarijohn RH, et al. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos Trans R Soc B Biol Sci. 2014;369:20130089. https://doi.org/10.1098/rstb.2013.0089
  64. 64. Altieri MA, Nicholls CI, Henao A, Lana MA. Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev. 2015;35:869–90. https://doi.org/10.1007/s13593-015-0285-2
  65. 65. Webb NP, Marshall N, Stringer LC, Reed MS, Chappell A, Herrick JE. Land degradation and climate change: building climate resilience in agriculture. Front Ecol Environ. 2017;15(9):450–59. https://doi.org/10.1002/fee.1530
  66. 66. Brooks S, Loevinsohn ME. Shaping agricultural innovation systems responsive to food insecurity and climate change. Nat Resour Forum. 2011;35:185–200. https://doi.org/10.1111/j.1477-8947.2011.01396.x
  67. 67. Anderson R, Bayer PE, Edwards D. Climate change and the need for agricultural adaptation. Curr Opin Plant Biol. 2020;56:197–202. https://doi.org/10.1016/j.pbi.2019.12.006
  68. 68. Chapagain S, Singh L, Subudhi PK, editors. Novel breeding approaches for developing climate-resilient rice. In: Climate resilient agriculture. Wallingford: CABI; 2020. p. 259–80. https://doi.org/10.1079/9781789240214.0259
  69. 69. Mackill DJ, Ismail AM, Pamplona AM, Sanchez DL, Carandang J, Septiningsih EM, editors. Stress tolerant rice varieties for adaptation to a changing climate. In: Rice in the Global Food System. Manila: International Rice Research Institute; 2010.
  70. 70. Uphoff N, Thakur AK. An Agroecological Strategy for Adapting to Climate Change: The System of Rice Intensification (SRI). In: Sarkar A, Sensarma SR, vanLoon GW, editors. Sustainable Solutions for Food Security. Cham: Springer; 2019. p. 201–17. https://doi.org/10.1007/978-3-319-77878-5_12
  71. 71. Bakala HS, Singh G, Srivastava P. Smart breeding for climate resilient agriculture. In: Abdurakhmonov IY, editor. Plant breeding-current and future views. London: IntechOpen; 2020. p. 113–31.
  72. 72. Gawande V, Saikanth DRK, Sumithra BS, Aravind SA, Swamy GN, Chowdhury M, et al. Potential of Precision Farming Technologies for Eco-Friendly Agriculture. Int J Plant Soil Sci. 2023;35(19):1–10. https://doi.org/10.9734/ijpss/2023/v35i193528
  73. 73. Naresh R, Singh NK, Sachan P, Mohanty LK, Sahoo S, Pandey SK, et al. Enhancing Sustainable Crop Production through Innovations in Precision Agriculture Technologies. J Sci Res Rep. 2024;30(3):1861–74. https://doi.org/10.9734/jsrr/2024/v30i31861
  74. 74. Hedley CB. The role of precision agriculture for improved nutrient management on farms. J Sci Food Agric. 2015;95(1):12–19. https://doi.org/10.1002/jsfa.6734
  75. 75. Khatri N, Vyas AK, Iwendi C, Chatterjee P. Precision Agriculture for Sustainability: Use of Smart Sensors, Actuators and Decision Support Systems. Boca Raton: CRC Press; 2024.
  76. 76. Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsilo TJ. Breeding wheat for drought tolerance: Progress and technologies. J Integr Agric. 2016;15(5):935–43. https://doi.org/10.1016/S2095-3119(15)61102-9
  77. 77. Ahmad SF, Dar AH. Precision farming for resource use efficiency. In: Kumar S, Meena RS, Jhariya MK, editors. Resources Use Efficiency in Agriculture. Singapore: Springer; 2020. p. 109–35. https://doi.org/10.1007/978-981-15-6953-1_4
  78. 78. Monteiro A, Santos S, Gonçalves P. Precision agriculture for crop and livestock farming-Brief review. Animals. 2021;11(8):2345. https://doi.org/10.3390/ani11082345
  79. 79. Adeyemi O, Grove I, Peets S, Norton T. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability. 2017;9(3):353. https://doi.org/10.3390/su9030353
  80. 80. Zafar U, Arshad M, Cheema MJ, Ahmad R. Sensor based drip irrigation to enhance crop yield and water productivity in semi-arid climatic region of Pakistan. Pak J Agric Sci. 2020;57(5):1413–21.
  81. 81. Balafoutis A, Beck B, Fountas S, Vangeyte J, Van der Wal T, Soto I, et al. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability. 2017;9(8):1339. https://doi.org/10.3390/su9081339
  82. 82. Shafi U, Mumtaz R, García-Nieto J, Hassan SA, Zaidi SAR, Iqbal N. Precision agriculture techniques and practices: From considerations to applications. Sensors. 2019;19(17):3796. https://doi.org/10.3390/s19173796
  83. 83. Parihar C, Jat H, Jat S, Kakraliya S, Nayak H. Precision nutrient management for higher nutrient use efficiency and farm profitability in irrigated cereal-based cropping systems. Indian J Fertilisers. 2020;16(10):1000–14.
  84. 84. Roberts DP, Short Jr NM, Sill J, Lakshman DK, Hu X, Buser M. Precision agriculture and geospatial techniques for sustainable disease control. Indian Phytopathol. 2021;74(2):287–305. https://doi.org/10.1007/s42360-021-00334-2
  85. 85. Egbuna C, Sawicka B. Natural remedies for pest, disease and weed control. London: Academic Press; 2019.
  86. 86. Holt N, Sishodia RP, Shukla S, Hansen KM. Improved water and economic sustainability with low-input compact bed plasticulture and precision irrigation. J Irrig Drain Eng. 2019;145(7):04019013. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001397
  87. 87. Roy T, George KJ. Precision farming: A step towards sustainable, climate-smart agriculture. In: Venkatramanan V, Shah S, Prasad R, editors. Global climate change: Resilient and smart agriculture. Singapore: Springer; 2020. p. 199–220.. https://doi.org/10.1007/978-981-32-9856-9_10
  88. 88. Solo EI, Barnes A, Balafoutis A, Beck B, Sanchez Fernandez B, Vangeyte J, et al. The contribution of precision agriculture technologies to farm productivity and the mitigation of greenhouse gas emissions in the EU. Luxembourg: Publications Office of the European Union; 2019. https://doi.org/10.2760/016263
  89. 89. Thakur AK, Kassam AH, Stoop WA, Uphoff N. Modifying rice crop management to ease water constraints with increased productivity, environmental benefits and climate-resilience. Agric Ecosyst Environ. 2016;235:101–04. https://doi.org/10.1016/j.agee.2016.10.011
  90. 90. Mehmood MZ, Qadir G, Afzal O, Awale MA, Ashraf RN, editors. Enhancing water use efficiency and productivity of rice crop using modern farming methods in punjab, pakistan, a brief review. In: Workshop on Jhelum-Chenab water resources management; 2019. p. 41–5. https://doi.org/10.33865/wjb.004.03.0235
  91. 91. Mallareddy M, Thirumalaikumar R, Balasubramanian P, Naseeruddin R, Nithya N, Mariadoss A, et al. Maximizing Water use efficiency in rice farming: a comprehensive review of innovative irrigation management technologies. Water. 2023;15(10):1802. https://doi.org/10.3390/w15101802
  92. 92. Wichaidist B, Intrman A, Puttrawutichai S, Rewtragulpaibul C, Chuanpongpanich S, Suksaroj C. The effect of irrigation techniques on sustainable water management for rice cultivation system - a review. Appl Environ Res. 2023;45(2):1–14. https://doi.org/10.35762/AER.2023.45.2.1
  93. 93. Hansen J, Vaughan C, Kagabo DM, Dinku T, Carr ER, Körner J, et al. Climate services can support african farmers' context-specific adaptation needs at scale. Front Sustain Food Syst. 2019;3:21. https://doi.org/10.3389/fsufs.2019.00021
  94. 94. Srinivasan G, Rafisura KM, Subbiah A. Climate information requirements for community-level risk management and adaptation. Clim Res. 2011;47:5–12. https://doi.org/10.3354/cr00962
  95. 95. Singh C, Rahman A, Srinivas A, Bazaz A. Risks and responses in rural India: Implications for local climate change adaptation action. Clim Risk Manag. 2018;21:52–68. https://doi.org/10.1016/j.crm.2018.06.001
  96. 96. Mudombi S, Nhamo G. Access to weather forecasting and early warning information by communal farmers in seke and murewa districts, Zimbabwe. J Hum Ecol. 2014;48(3):357–66. https://doi.org/10.1080/09709274.2014.11906805
  97. 97. Lu X. Provision of climate information for adaptation to climate change. Clim Res. 2011;47:83–94. https://doi.org/10.3354/cr00950
  98. 98. McCarthy N. Climate-smart agriculture in Latin America: drawing on research to incorporate technologies to adapt to climate change. Washington, D.C.: Inter-American Development Bank; 2014. https://doi.org/10.18235/0009202
  99. 99. Regmi S, Paudel B. Climate-smart agriculture: A review of sustainability, resilience and food security. Arch Agric Environ Sci. 2024;9(4):832–9. https://doi.org/10.26832/24566632.2024.0904028
  100. 100. Haldar N, Pearlin R. Sustainable and climate smart agriculture for food security: A review. J Exp Agric Int. 2023;45(11):229–39. https://doi.org/10.9734/jeai/2023/v45i112253
  101. 101. Patle G, Kumar M, Khanna M. Climate-smart water technologies for sustainable agriculture: A review. J Water Clim Change. 2020;11(4):1455–66. https://doi.org/10.2166/wcc.2019.257
  102. 102. Abbas AJ, Khalil R. Exploring new techniques and strategies for enhancing rice drought tolerance. Biol Agric Sci Res J. 2022;2022:1–13. https://doi.org/10.54112/basrj.v2022i1.4
  103. 103. Lassoued R, Macall DM, Smyth SJ, Phillips PWB, Hesseln H. Expert Insights on the impacts of and potential for, agricultural big data. Sustainability. 2021;13(5):2521. https://doi.org/10.3390/su13052521
  104. 104. Muthurasu N, Sahithyan S, Aravind M, RamanagiriBharathan A. A Prediction system for farmers to enhance the agriculture yield using cognitive data science. Int J Adv Res Comput Sci. 2018;9:780–4. https://doi.org/10.26483/ijarcs.v9i2.5784
  105. 105. Gitz V, Meybeck A. Risks, vulnerabilities and resilience in a context of climate change. In: Meybeck A, Lankoski J, Redfern S, Azzu N, Gitz V, editors. Building resilience for adaptation to climate change in the agriculture sector. Rome: Food and Agriculture Organization of the United Nations; 2012. p. 19–42

Downloads

Download data is not yet available.