Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Current approaches and future potential for pretreatment of agricultural residues and industrial effluents to boost biomethanation

DOI
https://doi.org/10.14719/pst.8917
Submitted
16 April 2025
Published
23-09-2025

Abstract

The burning of organic agricultural substrates such as crop residues, paddy straw, maize stalk, sugarcane straw and corn stover leads to severe air pollution. These wastes are essential feedstocks in the production of biogas. The above materials can be anaerobically digested to produce biogas, which in turn can be used to generate fuel, cooking gas, soil-conditioner and electricity as a sustainable alternative use for these residues. However, the presence of lignin and cellulose contents in these wastes, at concentrations ranging from 6-26 % and 5-50 %, reduce the effectiveness of biomethanation process. For optimum anaerobic digestion, appropriate pretreatment methods, such as physical (milling, grinding, ultrasonic), chemical (alkali, thermo-chemical pretreatment) or biological (enzymes, microorganisms) techniques, can be used to lower the lignin content. Untreated effluents containing organic matter, fertilizers, heavy metals and other contaminants are released into water bodies by agro-industries, resulting in the degradation of land and water ecosystems. Like agricultural substrates, agro-industrial effluents can be efficiently used to produce bioethanol and biogas, following the removal of these inhibitors by using effective pretreatment methods. When utilized as a feedstock, pre-treated wastewater can yield up to 2.8 % more biogas and 64 % more methane than untreated wastewater. The biodigested slurry improves soil health and enhances crop yield. This article describes several pretreatment techniques to improve biogas production from industrial effluents and agricultural wastes entrusting the soil health, sustainability and crop yield, consistent with the circular economy concept.

References

  1. 1. Singh N, Singh D. Agricultural waste management. In: Senthilvalavan P, Langyan S, Anwar A, Sharma S, editors. Futuristic trends in agriculture engineering & food sciences. Vol. 3, Book 22. First ed. Iterative International Publisher; 2024. p. 311–9. Available from: https://iipseries.org/viewpaper.php?pid=6012&pt=agricultural-waste-management
  2. 2. Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. Environ Res. 2022;206:112285. https://doi.org/10.1016/j.envres.2021.112285
  3. 3. Gois GNSB, Peiter AS, dos Santos Amorim NC, de Amorim ELC. Biomethane production as an alternative for the valorization of agricultural residues: a review on main substrates used as renewable energy sources. In: Singh P, editor. Emerg Trends Tech Biofuel Prod Agric Waste. Clean Energy Prod Technol. Singapore: Springer Nature; 2024. p. 119–30. https://doi.org/10.1007/978-981-99-8244-8_7
  4. 4. Divyabharathi R, Kalidasan B, Sakthi SSRJ, Chinnasamy S. Recent advances in sustainable agro residue utilisation, barriers and remediation for environmental management: present insights and future challenges. Ind Crops Prod. 2024;216:118790. https://doi.org/10.1016/j.indcrop.2024.118790
  5. 5. Patil NDC, Kashyap S, Jarial S. Agricultural waste management through crop residue management: challenges, solutions, and technological advancements. In: Mohan C, Jeet S, Dixit S, Carabineiro SAC, editors. Practice, progress, and proficiency in sustainability. IGI Global; 2024. p. 170–81. https://doi.org/10.4018/979-8-3693-4264-0.ch012
  6. 6. GeethaThanuja K, Thiyagarajan D, Ramesh D, Karthikeyan S. Biomethanation for energy security and sustainable development. In: Ramanujam PK, Parameswaran B, Bharathiraja B, Magesh A, editors. Bioenergy. Energy Environ Sustain. Singapore: Springer Nature; 2023. p. 195–217. https://doi.org/10.1007/978-981-99-3002-9_11
  7. 7. Belinska S, Bielik P, Adamičková I, Husárová P, Onyshko S, Belinska Y. Assessment of environmental and economic-financial feasibility of biogas plants for agricultural waste treatment. Sustainability. 2024;16(7):2740. https://doi.org/10.3390/su16072740
  8. 8. Frankowski J, Czekała W. Agricultural plant residues as potential co-substrates for biogas production. Energies. 2023;16(11):4396. https://doi.org/10.3390/en16114396
  9. 9. Tamang P, Tyagi VK, Gunjyal N, Rahmani AM, Singh R, Kumar P, et al. Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat straw). Energy. 2023;264:126249. https://doi.org/10.1016/j.energy.2023.126249
  10. 10. Devi RU, Balakrishna K. Crop waste management: perspectives on alternative uses in India. CAB Rev. 2022;cabireviews202217022.
  11. 11. Swarnalatha S, Vinayagamoorthy N, Sekaran G. Municipal wastewater—a remedy for water stress in India. In: Yadav S, Negm AM, Yadava RN, editors. Wastewater assessment, treatment, reuse and development in India. Earth Environ Sci Libr. Cham: Springer Int Publ; 2022. p. 185–211. https://doi.org/10.1007/978-3-030-95786-5_10
  12. 12. Tyagi S. Impact assessment of textile industry effluent on water quality and health—a case study of Hapur district, Western Uttar Pradesh. Int J Res Appl Sci Eng Technol. 2023;11(12):909–14. https://doi.org/10.22214/ijraset.2023.57426
  13. 13. Michailos S, Walker M, Moody A, Poggio D, Pourkashanian M. Biomethane production using an integrated anaerobic digestion, gasification and CO₂ biomethanation process in a real wastewater treatment plant: a techno-economic assessment. Energy Convers Manag. 2020;209:112663. https://doi.org/10.1016/j.enconman.2020.112663
  14. 14. Czatzkowska M, Harnisz M, Korzeniewska E, Koniuszewska I. Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: a review. Energy Sci Eng. 2020;8(5):1880–97. https://doi.org/10.1002/ese3.609
  15. 15. Guo Z, Usman M, Alsareii SA, Harraz FA, Al-Assiri MS, Jalalah M, et al. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. Bioresour Technol. 2021;337:125383. https://doi.org/10.1016/j.biortech.2021.125383
  16. 16. Zieliński M, Kazimierowicz J, Dębowski M. Advantages and limitations of anaerobic wastewater treatment—technological basics, development directions, and technological innovations. Energies. 2022;16(1):83. https://doi.org/10.3390/en16010083
  17. 17. Kumar P, Samuchiwal S, Malik A. Anaerobic digestion of textile industries wastes for biogas production. Biomass Convers Biorefinery. 2020;10(3):715–24. https://doi.org/10.1007/s13399-020-00601-8
  18. 18. Apazhev AK, Shekikhachev YA, Fiapshev AG, Shekikhacheva LZ, Fiapshev BA. Environmentally oriented disposal of waste from agricultural enterprises in a biomethane plant. IOP Conf Ser Earth Environ Sci. 2022;1112(1):012023. https://doi.org/10.1088/1755-1315/1112/1/012023
  19. 19. Nagda A, Meena M, Shah MP. Bioremediation of industrial effluents: a synergistic approach. J Basic Microbiol. 2022;62(3–4):395–414. https://doi.org/10.1002/jobm.202100540
  20. 20. Chauhan JS, Kumar S. Wastewater ferti-irrigation: an eco-technology for sustainable agriculture. Sustain Water Resour Manag. 2020;6(3):31. https://doi.org/10.1007/s40899-020-00410-z
  21. 21. Devarenjan J, Herbert GMJ, Amutha D. Utilization of bioslurry from biogas plant as fertilizer. Int J Recent Technol Eng. 2019;8(4):12210–3. https://doi.org/10.35940/ijrte.D8144.118419
  22. 22. Mittal SK, Singh N, Agarwal R, Awasthi A, Gupta PK. Ambient air quality during wheat and rice crop stubble burning episodes in Patiala. Atmos Environ. 2009;43(2):238–44. https://doi.org/10.1016/j.atmosenv.2008.09.068
  23. 23. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol. 2015;178:178–86. https://doi.org/10.1016/j.biortech.2014.09.103
  24. 24. Obi F, Ugwuishiwu B, Nwakaire J. Agricultural waste concept, generation, utilization and management. Niger J Technol. 2016;35(4):957. https://doi.org/10.4314/njt.v35i4.34
  25. 25. Wang Z, Dien BS, Rausch KD, Tumbleson ME, Singh V. Fermentation of undetoxified sugarcane bagasse hydrolyzates using a two stage hydrothermal and mechanical refining pretreatment. Bioresour Technol. 2018;261:313–21. https://doi.org/10.1016/j.biortech.2018.04.041
  26. 26. Fernández Rodríguez J, De Diego Díaz B, Tapia Martín ME. Biomethanization of agricultural lignocellulosic wastes: pretreatments. In: Clean Energy and Resources Recovery. Elsevier; 2021. p 155–202. https://doi.org/10.1016/B978-0-323-85223-4.00005-1
  27. 27. Garuti M, Sinisgalli E, Soldano M, Fermoso FG, Rodriguez AJ, Carnevale M, et al. Mechanical pretreatments of different agri based feedstock in full scale biogas plants under real operational conditions. Biomass Bioenergy. 2022;158:106352. https://doi.org/10.1016/j.biombioe.2022.106352
  28. 28. Pan L, He M, Wu B, Wang Y, Hu G, Ma K. Simultaneous concentration and detoxification of lignocellulosic hydrolysates by novel membrane filtration system for bioethanol production. J Clean Prod. 2019;227:1185–94. https://doi.org/10.1016/j.jclepro.2019.04.210
  29. 29. Yin Y, Wang J. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment. Radiat Phys Chem. 2016;123:63–7. https://doi.org/10.1016/j.radphyschem.2016.03.003
  30. 30. Fei X, Chen T, Jia W, Shan Q, Hei D, Ling Y, et al. Enhancement effect of ionizing radiation pretreatment on biogas production from anaerobic fermentation of food waste. Radiat Phys Chem. 2020;168:108534. https://doi.org/10.1016/j.radphyschem.2020.108534
  31. 31. Kishta AM, Faidallah RS, Awny A. Enhancing biogas production by thermal pretreatment of agricultural wastes. Misr J Agric Eng. 2019;36(4):1319–34. https://doi.org/10.21608/mjae.2019.94904
  32. 32. Yang L, Li X, Yuan H, Yan B, Yang G, Lu Y, et al. Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment. Energy. 2023;268:126633. https://doi.org/10.1016/j.energy.2023.126633
  33. 33. Bai X, Lant PA, Jensen PD, Astals S, Pratt S. Enhanced methane production from algal digestion using free nitrous acid pre-treatment. Renew Energy. 2016;88:383–90. https://doi.org/10.1016/j.renene.2015.11.063
  34. 34. Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, et al. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy. 2020;199:117457. https://doi.org/10.1016/j.energy.2020.117457
  35. 35. Pellera FM, Gidarakos E. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 2018;71:689–703. https://doi.org/10.1016/j.wasman.2017.10.041
  36. 36. Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Factories. 2014;13(1):92. https://doi.org/10.1186/1475-2859-13-92
  37. 37. Keshav PK, Shaik N, Koti S, Linga VR. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind Crops Prod. 2016;91:323–31. https://doi.org/10.1016/j.indcrop.2016.06.005
  38. 38. Yuan Z, Wen Y, Li G. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline peroxide pretreatment. Bioresour Technol. 2018;259:228–36. https://doi.org/10.1016/j.biortech.2018.03.061
  39. 39. Muthuvelu KS, Rajarathinam R, Kanagaraj LP, Ranganathan RV, Dhanasekaran K, Manickam NK. Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound assisted alkaline pre treatment. Waste Manag. 2019;87:368–74. https://doi.org/10.1016/j.wasman.2019.02.030
  40. 40. Lorenci Woiciechowski A, Dalmas Neto CJ, Porto De Souza Vandenberghe L, De Carvalho Neto DP, Novak Sydney AC, Letti LAJ, et al. Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance – conventional processing and recent advances. Bioresour Technol. 2020;304:122848. https://doi.org/10.1016/j.biortech.2020.122848
  41. 41. Putrino FM, Tedesco M, Bodini RB, Oliveira ALD. Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Bioresour Technol. 2020;309:123387. https://doi.org/10.1016/j.biortech.2020.123387
  42. 42. Tan J, Li Y, Tan X, Wu H, Li H, Yang S. Advances in pretreatment of straw biomass for sugar production. Front Chem. 2021;9:696030. https://doi.org/10.3389/fchem.2021.696030
  43. 43. Awogbemi O, Kallon DVV. Pretreatment techniques for agricultural waste. Case Stud Chem Environ Eng. 2022;6:100229. https://doi.org/10.1016/j.cscee.2022.100229
  44. 44. Ying W, Cai C, Lu J, Li X, Wang Z, Chu J. Efficient crop straws biotreatment using the fungus Cerrena unicolor GC.u01. AMB Express. 2024;14(1):28. https://doi.org/10.1186/s13568-024-01668-6
  45. 45. Shetty D, Joshi A, Dagar SS, Kshirsagar P, Dhakephalkar PK. Bioaugmentation of anaerobic fungus Orpinomyces joyonii boosts sustainable biomethanation of rice straw without pretreatment. Biomass Bioenergy. 2020;138:105546. https://doi.org/10.1016/j.biombioe.2020.105546
  46. 46. Li J, Yuan H, Yang J. Bacteria and lignin degradation. Front Biol (Beijing). 2009;4(1):29–38. https://doi.org/10.1007/s11515-009-0025-6
  47. 47. Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, et al. Bacterial transformation of lignin: key enzymes and high-value products. Biotechnol Biofuels Bioprod. 2024;17(1):2. https://doi.org/10.1186/s13068-023-02410-5
  48. 48. Ali G, Ling Z, Saif I, Usman M, Jalalah M, Harraz FA, et al. Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion. Environ Pollut. 2021;278:116801. https://doi.org/10.1016/j.envpol.2021.116801
  49. 49. Muaaz-Us-Salam S, Cleall PJ, Harbottle MJ. Application of enzymatic and bacterial biodelignification systems for enhanced breakdown of model lignocellulosic wastes. Sci Total Environ. 2020;728:138741. https://doi.org/10.1016/j.scitotenv.2020.138741
  50. 50. Shah TA, Lee CC, Orts WJ, Tabassum R. Biological pretreatment of rice straw by ligninolytic Bacillus sp. strains for enhancing biogas production. Environ Prog Sustain Energy. 2019;38(3):e13036. https://doi.org/10.1002/ep.13036
  51. 51. De Gonzalo G, Colpa DI, Habib MHM, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol. 2016;236:110–9. https://doi.org/10.1016/j.jbiotec.2016.08.011
  52. 52. Weide T, Baquero CD, Schomaker M, Brügging E, Wetter C. Effects of enzyme addition on biogas and methane yields in the batch anaerobic digestion of agricultural waste (silage, straw, and animal manure). Biomass Bioenergy. 2020;132:105442. https://doi.org/10.1016/j.biombioe.2019.105442
  53. 53. He X, Wang L, Lau A. Investigation of steam treatment on the sorption behavior of rice straw pellets. Energies. 2020;13(20):5401. https://doi.org/10.3390/en13205401
  54. 54. Chaib O, Abatzoglou N, Achouri IE. Lignocellulosic biomass valorisation by coupling steam explosion treatment and anaerobic digestion. Energies. 2024;17(3):677. https://doi.org/10.3390/en17030677
  55. 55. Steinbach D, Wüst D, Zielonka S, Krümpel J, Munder S, Pagel M, et al. Steam explosion conditions highly influence the biogas yield of rice straw. Molecules. 2019;24(19):3492. https://doi.org/10.3390/molecules24193492
  56. 56. Kaldis F. Steam explosion as a pretreatment method to improve biogas production from wheat straw. 2023 [cited 2024 Nov 6] Available from: http://centaur.reading.ac.uk/id/eprint/99994
  57. 57. Duque A, Manzanares P, Ballesteros M. Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy. 2017;114:1427–41. https://doi.org/10.1016/j.renene.2017.07.030
  58. 58. Batova TN, Volkov AR, Pavlova EA. Extrusion processing of waste in the circular economy. Econ Environ Manag. 2019:74–81.
  59. 59. Chevalier A, Evon P, Monlau F, Vandenbossche V, Sambusiti C. Twin-screw extrusion mechanical pretreatment for enhancing biomethane production from agro-industrial, agricultural and catch crop biomasses. Waste. 2023;1(2):497–514. https://doi.org/10.3390/waste1020030
  60. 60. Kupryaniuk K, Oniszczuk T, Combrzyński M, Czekała W, Matwijczuk A. The influence of corn straw extrusion pretreatment parameters on methane fermentation performance. Materials. 2020;13(13):3003. https://doi.org/10.3390/ma13133003
  61. 61. Bej S, Mondal A, Banerjee P. Effluent Water Treatment: A Potential Way Out Towards Conservation of Fresh Water in India. In: Ghosh SK, Saha PD, Francesco Di M, editors. Recent Trends in Waste Water Treatment and Water Resource Management [Internet]. Singapore: Springer Singapore; 2020 [cited 2024 May 16]. p. 33–46. Available from: http://link.springer.com/10.1007/978-981-15-0706-9_4
  62. 62. Singh US. Assessment of physicochemical characteristics of effluents from paper mill in the state of Uttar Pradesh, India. Int J Eng Res. 2020;9(7):190.
  63. 63. Sivaram NM, Barik D. Toxic Waste From Leather Industries. In: Energy from Toxic Organic Waste for Heat and Power Generation [Internet]. Elsevier; 2019. p. 55–67. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081025284000055
  64. 64. Ballester A, Castro L, Costa MC, Carlier J, García-Roig M, Pérez-Galende P, et al. Design of remediation pilot plants for the treatment of industrial metal-bearing effluents (Biometal Demo project): Lab tests. Hydrometallurgy. 2017;168:103–15. https://doi.org/10.1016/j.hydromet.2016.10.019
  65. 65. Hermassi M, Valderrama C, Gibert O, Moreno N, Querol X, Batis NH, et al. Recovery of nutrients (N-P-K) from potassium-rich sludge anaerobic digestion side-streams by integration of a hybrid sorption-membrane ultrafiltration process: Use of powder reactive sorbents as nutrient carriers. Sci Total Environ. 2017;599–600:422–30. https://doi.org/10.1016/j.scitotenv.2017.04.174
  66. 66. Garba ZN, Zhou W, Lawan I, Xiao W, Zhang M, Wang L, et al. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J Environ Manage. 2019;241:59–75. https://doi.org/10.1016/j.jenvman.2019.04.041
  67. 67. Santra B, Kar S, Ghosh S, Majumdar S. An integrated process development for treatment of textile effluent involving ceramic membrane-driven ultrafiltration and biosorption. In: Ghosh SK, editor. Waste water recycling and management. Singapore: Springer Singapore; 2019. p. 75–84. https://doi.org/10.1007/978-981-13-0776-0_7
  68. 68. Mu R, Liu B, Chen X, Wang N, Yang J. Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection. Environ Technol Innov. 2020;20:101107. https://doi.org/10.1016/j.eti.2020.101107
  69. 69. Ragio RA, Miyazaki LF, Oliveira MAD, Coelho LHG, Bueno RDF, Lucas Subtil E. Pre coagulation assisted ultrafiltration membrane process for anaerobic effluent. J Environ Chem Eng. 2020;8(5):104066. https://doi.org/10.1016/j.jece.2020.104066
  70. 70. Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B, Khoshnevisan B. Integrating electrocoagulation process with up-flow anaerobic sludge blanket for in-situ biomethanation and performance improvement. Bioresour Technol. 2022;360:127536. https://doi.org/10.1016/j.biortech.2022.127536
  71. 71. Shankar R, Varma AK, Mondal P, Chand S. Treatment of biodigester effluent through EC followed by MFC: Pollutants removal and energy perspective. Environ Prog Sustain Energy. 2019;38(4):13139. https://doi.org/10.1002/ep.13139
  72. 72. O’Donnell CP. Ozone in food processing. Oxford: Blackwell Pub; 2012.
  73. 73. Xia Z, Hu L. Treatment of organics contaminated wastewater by ozone micro-nano-bubbles. Water. 2018;11(1):55. https://doi.org/10.3390/w11010055
  74. 74. Bensah EC, Mensah M. Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations. Int J Chem Eng. 2013;2013:1–21. https://doi.org/10.1155/2013/719607
  75. 75. Guaya D, Hermassi M, Valderrama C, Farran A, Cortina JL. Recovery of ammonium and phosphate from treated urban wastewater by using potassium clinoptilolite impregnated hydrated metal oxides as N-P-K fertilizer. J Environ Chem Eng. 2016;4(3):3519–26. https://doi.org/10.1016/j.jece.2016.07.014
  76. 76. Hu L, Yu J, Luo H, Wang H, Xu P, Zhang Y. Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chem Eng J. 2020;382:123001. https://doi.org/10.1016/j.cej.2019.123001
  77. 77. Wu H, Vaneeckhaute C. Nutrient recovery from wastewater: A review on the integrated physicochemical technologies of ammonia stripping, adsorption and struvite precipitation. Chem Eng J. 2022;433:133664. https://doi.org/10.1016/j.cej.2021.133664
  78. 78. M-Ridha MJ, Hussein SI, Alismaeel ZT, Atiya MA, Aziz GM. Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alex Eng J. 2020;59(5):3551–63. https://doi.org/10.1016/j.aej.2020.05.020
  79. 79. Abomohra AEF, El-Hefnawy ME, Wang Q, Huang J, Li L, Tang J, et al. Sequential bioethanol and biogas production coupled with heavy metal removal using dry seaweeds: Towards enhanced economic feasibility. J Clean Prod. 2021;316:128341. https://doi.org/10.1016/j.jclepro.2021.128341
  80. 80. Naghdi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environ Pollut. 2018;234:190–213. https://doi.org/10.1016/j.envpol.2017.11.044
  81. 81. Singh RK, Tripathi R, Ranjan A, Srivastava AK. Fungi as potential candidates for bioremediation. In: Abatement of environmental pollutants. Amsterdam: Elsevier; 2020. p. 177–91. https://doi.org/10.1016/B978-0-12-818095-2.00009-6
  82. 82. Hussain Z, Rasheed F, Tanvir MA, Zafar Z, Rafay M, Mohsin M, et al. Increased antioxidative enzyme activity mediates the phytoaccumulation potential of Pb in four agroforestry tree species: a case study under municipal and industrial wastewater irrigation. Int J Phytoremediation. 2020 Nov 28;22(13):1393–403. https://doi.org/10.1080/15226514.2020.1743434
  83. 83. España-Gamboa E, Chablé-Villacis R, Alzate-Gaviria L, Dominguez-Maldonado J, Leal-Baustista RM, Soberanis-Monforte G, et al. Native fungal strains from Yucatan, an option for treatment of biomethanated vinasse. Rev Mex Ing Quím. 2021;20(2):607–20. https://doi.org/10.24275/rmiq/IA2063
  84. 84. Crasta I, Sivakumar S, Banuvalli B, Murugesan S, Mudliar S. Mild-thermal pretreatment of agro-residues enhances biomethanation potential: a comparative study of Napier grass and rice straw. Clean Technol Environ Policy. 2021. https://doi.org/10.1007/s10098-021-02148-2
  85. 85. Jiménez J, Carabeo-Pérez A, Negrín AME, Calero-Hurtado A. Addition of microbial consortium to the rice straw biomethanization: effect on specific methanogenic activity, kinetic and bacterial community. [Preprint]. 2024. Available from: https://www.researchsquare.com/article/rs-3931580/v1
  86. 86. Memon MJ, Memon AR. Wheat straw optimization via its efficient pretreatment for improved biogas production. Civ Eng J. 2020;6(6):1056–63. https://doi.org/10.28991/cej-2020-03091540
  87. 87. Alba OS, Syrovy LD, Duddu HSN, Shirtliffe SJ. Increased seeding rate and multiple methods of mechanical weed control reduce weed biomass in a poorly competitive organic crop. Field Crops Res. 2020;245:107648. https://doi.org/10.1016/j.fcr.2019.107648
  88. 88. Kaur H, Kommalapati RR. Effect of inoculum concentration and pretreatment on biomethane recovery from cotton gin trash. J Agric Sci. 2021;13(4):15–26. https://doi.org/10.5539/jas.v13n4p15
  89. 89. Soares LA, Solano MG, Lindeboom REF, Van Lier JB, Silva EL, Varesche MBA. Valorization of sugarcane bagasse through biofuel and value-added soluble metabolites production: Optimization of alkaline hydrothermal pretreatment. Biomass Bioenergy. 2022;165:106564. https://doi.org/10.1016/j.biombioe.2022.106564
  90. 90. Shi J, Zhang G, Zhang H, Qiao F, Fan J, Bai D, et al. Effect of thermal hydrolysis pretreatment on anaerobic digestion of protein-rich biowaste: Process performance and microbial community structures shift. Front Environ Sci. 2022;9:805078. https://doi.org/10.3389/fenvs.2021.805078
  91. 91. Zhurka M, Spyridonidis A, Vasiliadou IA, Stamatelatou K. Biogas production from sunflower head and stalk residues: effect of alkaline pretreatment. Molecules. 2020;25(1):164. https://doi.org/10.3390/molecules25010164
  92. 92. Dubrovskis V, Plume I, Straume I. Use of enzyme alpha-amylase to increase biogas yield from lucerne pellets and birch leaves pellets. Eng Rural Dev Proc Int Sci Conf 18;2019:1394–400. Available from: http://www.tf.llu.lv/conference/proceedings2019/Papers/N115.pdf AGRIS
  93. 93. Chetawan W, Saritpongteeraka K, Palamanit A, Chaiprapat S. Practical approaches for retrofitting plug flow digester and process control to maximize hydrolysis and methane yield from piggery waste. J Environ Chem Eng. 2021;9(4):105620. https://doi.org/10.1016/j.jece.2021.105620
  94. 94. Ginting N. Biomethanization technology application on slaughterhouse in Indonesia. IOP Conf Ser Earth Environ Sci. 2022;963(1):012037. https://doi.org/10.1088/1755-1315/889/1/012037
  95. 95. Hashemi SS, Abbasi Riyakhuni M, Denayer JFM, Tabatabaei M, Aghbashlo M, Karimi K. Efficient bioremediation of distillery and dairy wastewaters: a three stage biorefinery for high quality aquaculture feed and bioenergy generation. Process Saf Environ Prot. 2023;180:566–74. https://doi.org/10.1016/j.psep.2023.10.016
  96. 96. Moreira VR, Carpanez TG, Magalhães NC, Ladeira YFX, Lange LC, Amaral MCS. Ultrafiltration as a pre treatment technology to improve vinasse biomethanation. Process Saf Environ Prot. 2023;169:718–24. https://doi.org/10.1016/j.psep.2022.11.061
  97. 97. Anacleto TM, Kozlowsky Suzuki B, Wilson AE, Enrich Prast A. Comprehensive meta analysis of pathways to increase biogas production in the textile industry. Energies. 2022;15(15):5574. https://doi.org/10.3390/en15155574
  98. 98. Welz PJ, De Jonge N, Lilly M, Kaira W, Mpofu AB. Integrated biological system for remediation and valorization of tannery wastewater: focus on microbial communities responsible for methanogenesis and sulfidogenesis. Bioresour Technol. 2024;395:130411. https://doi.org/10.1016/j.biortech.2023.130411

Downloads

Download data is not yet available.