Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Carbon sequestration potential of biochar for sustainable agriculture

DOI
https://doi.org/10.14719/pst.8918
Submitted
16 April 2025
Published
20-10-2025

Abstract

Biochar, a carbon-rich product from biomass pyrolysis, presents a promising solution for sustainable agriculture, particularly in long-term carbon sequestration and soil enhancement. Its durability enables it to persist in soils for extended periods, functioning as a permanent carbon sink and helping to reduce atmospheric CO2 levels. The stability and carbon sequestration potential of biochar is influenced by factors such as the type of feedstock used, pyrolysis conditions, soil characteristics and environmental factors. Incorporating biochar into sustainable agricultural practices, such as conservation tillage, cover cropping and agroforestry, can significantly improve soil health and carbon storage. Additionally, biochar contributes to soil quality by minimizing nutrient leaching and runoff, controlling erosion and aiding in soil restoration efforts. While biochar provides a range of environmental and agricultural benefits, further research is necessary to optimize its production, application, integration and stability across diverse landscape conditions.

References

  1. 1. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, Zhu D. Global carbon budget 2017. Earth Syst Sci Data. 2018;10(1):405–48. https://doi.org/10.5194/essd-10-405-2018
  2. 2. Cowie A, Azzi E, Weng ZH, Woolf D. Biochar, greenhouse gas accounting and climate change mitigation. In: Biochar for Environmental Management. 2024. p. 759–84. https://doi.org/10.4324/9781003297673-30
  3. 3. Fawzy S, Osman AI, Doran J, Rooney DW. Strategies for mitigation of climate change: A review. Environ Chem Lett. 2020;18:2069–94. https://doi.org/10.1007/s10311-020-01059-w
  4. 4. Arif M, Jan T, Riaz M, Fahad S, Adnan M, Amanullah, et al. Biochar; a remedy for climate change. Environ Clim Plant Veg Growth. 2020;151–71.
  5. 5. Song B, Chen M, Zhao L, Qiu H, Cao X. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Sci Total Environ. 2019;661:685–95. https://doi.org/10.1016/j.scitotenv.2019.01.193
  6. 6. Zhang Z, Zhu Z, Shen B, Liu L. Insights into biochar and hydrochar production and applications: A review. Energy. 2019;171:581–98. https://doi.org/10.1016/j.energy.2019.01.035
  7. 7. Fawzy S, Osman AI, Yang H, Doran J, Rooney DW. Industrial biochar systems for atmospheric carbon removal: A review. Environ Chem Lett. 2021;19:3023–55. https://doi.org/10.1007/s10311-021-01210-1
  8. 8. Kannan P, Paramasivan M, Marimuthu S, Swaminathan C, Bose J. Applying both biochar and phosphobacteria enhances Vigna mungo L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability. Agric Ecosyst Environ. 2021;308:107258. https://doi.org/10.1016/j.agee.2020.107258
  9. 9. Robb S, Joseph S, Abdul Aziz A, Dargusch P, Tisdell C. Biochar's cost constraints are overcome in small-scale farming on tropical soils in lower-income countries. Land Degrad Dev. 2020;31(13):1713–26. https://doi.org/10.1002/ldr.3541
  10. 10. Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. 2020;19(1):191–215. https://doi.org/10.1007/s11157-020-09523-3
  11. 11. Rumpel C, Amiraslani F, Chenu C, Garcia Cardenas M, Kaonga M, Koutika LS, et al. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio. 2020;49:350–60. https://doi.org/10.1007/s13280-019-01165-2
  12. 12. Lehmann J, Joseph S. Biochar for climate change mitigation: A review of the science. Nat Rev Earth Environ. 2022;3(2):89–102. https://doi.org/10.1038/s43017-021-00101-7
  13. 13. Bogunovic I, Dugan I, Pereira P, Filipovic V, Filipovic L, Krevh V, et al. Effects of biochar and cattle manure under different tillage management on soil properties and crop growth in Croatia. Agriculture. 2023;13(11):2128.
  14. 14. Michaelowa A, Honegger M, Poralla M, Winkler M, Dalfiume S, Nayak A. International carbon markets for carbon dioxide removal. PLoS Clim. 2023;2(5):e0000118. https://doi.org/10.1371/journal.pclm.0000118
  15. 15. Fouché J, Burgeon V, Meersmans J, Leifeld J, Cornelis JT. Accumulation of century-old biochar contributes to carbon storage and stabilization in the subsoil. Geoderma. 2023;440:116717. https://doi.org/10.1016/j.geoderma.2023.116717
  16. 16. Meng F, Yang H, Fan X, Gao X, Tai J, Sa R, et al. A microbial ecosystem enhanced by regulating soil carbon and nitrogen balance using biochar and nitrogen fertiliser five years after application. Sci Rep. 2023;13(1):22233. https://doi.org/10.1038/s41598-023-49140-y
  17. 17. Gross A, Bromm T, Polifka S, Fischer D, Glaser B. Long-term biochar and soil organic carbon stability - Evidence from field experiments in Germany. Sci Total Environ. 2024;954:176340. https://doi.org/10.1016/j.scitotenv.2024.176340
  18. 18. Jing F, Sun Y, Liu Y, Wan Z, Chen J, Tsang DC. Interactions between biochar and clay minerals in changing biochar carbon stability. Sci Total Environ. 2022;809:151124. https://doi.org/10.1016/j.scitotenv.2021.151124
  19. 19. Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, Karakoti A, et al. Multifunctional applications of biochar beyond carbon storage. Int Mater Rev. 2022;67(2):150–200. https://doi.org/10.1080/09506608.2021.1922047
  20. 20. Spokas KA, Reicosky DC. Impacts of biochar and biochar-amended soils on soil emissions of greenhouse gases. Adv Agron. 2020;160:1–45
  21. 21. Gomez J, Smith P, Brown R, Wilson K. Microbial interactions with biochar: Implications for carbon sequestration in soils. Front Microbiol. 2023;14:567–80. https://doi.org/10.3389/fmicb.2023.00567
  22. 22. Han L, Lu C, Chen L, Wang F, Gao K, Yu Y, et al. Carbon sequestration potential of biochar in soil from the perspective of organic carbon structural modification. Appl Soil Ecol. 2024;198:105389. https://doi.org/10.1016/j.apsoil.2024.105389
  23. 23. Kalu S, Seppänen A, Mganga KZ, Sietiö OM, Glaser B, Karhu K. Biochar reduced the mineralization of native and added soil organic carbon: Evidence of negative priming and enhanced microbial carbon use efficiency. Biochar. 2024;6(1):7. https://doi.org/10.1007/s42773-023-00294-y
  24. 24. Kumar A, Tiwari AK, Milani D. Decarbonizing hard-to-abate heavy industries: Current status and pathways towards net-zero future. Process Saf Environ Prot. 2024. https://doi.org/10.1016/j.psep.2024.04.107
  25. 25. Faehn T, Bachner G, Beach R, Chateau J, Fujimori SI, Ghosh M, et al. Capturing key energy and emission trends in CGE models: Assessment of status and remaining challenges [Discussion Paper]. 2020. https://hdl.handle.net/10419/249126
  26. 26. Galinato SP, Yoder JK, Granatstein D. The economic value of biochar in crop production and carbon sequestration. Energy Policy. 2011;39(10):6344–50. https://doi.org/10.1016/j.enpol.2011.07.035
  27. 27. Oladele O, Braimoh A. Potential of agricultural land management activities for increased soil carbon sequestration in Africa-a review. Appl Ecol Environ Res. 2014;12(3):741–51.
  28. 28. Lyu H, Lim JY, Zhang Q, Senadheera SS, Zhang C, Huang Q, et al. Conversion of organic solid waste into energy and functional materials using biochar catalyst: Bibliometric analysis, research progress and directions. Appl Catal B Environ. 2024;340:123223. https://doi.org/10.1016/j.apcatb.2023.123223
  29. 29. Feng D, Wang S, Zhang Y, Zhao Y, Sun S, Chang G, et al. Review of carbon fixation evaluation and emission reduction effectiveness for biochar in China. Energy Fuels. 2020;34(9):10583–606. https://doi.org/10.1021/acs.energyfuels.0c02396
  30. 30. Naeem MA, Khalid M, Aon M, Abbas G, Tahir M, Amjad M, et al. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Arch Agron Soil Sci. 2017;63(14):2048–61. https://doi.org/10.1080/03650340.2017.1325468
  31. 31. Major J, Lehmann J, Rondon M, Goodale C. Biochar effects on soil physical properties: A meta-analysis. Soil Sci Soc Am J. 2021;85(4):1017–30.
  32. 32. Guo R, Qian R, Naseer MA, Han F, Zhang P, Jia Z, et al. Integrated straw-derived biochar utilization to increase net ecosystem carbon budget and economic benefit and reduce the environmental footprint. Field Crops Res. 2024;307:109247. https://doi.org/10.1016/j.fcr.2023.109247
  33. 33. Liu G, Liu L, Liu H, Zheng H. Investigating CO2 sequestration properties of biochar shotcrete. Constr Build Mater. 2024;443:137779. https://doi.org/10.1016/j.conbuildmat.2024.137779
  34. 34. Lehmann J, Rondon M. Biochar soil management on highly weathered soils in the humid tropics. In: Lehmann J, Joseph S, editors. Biochar for Environmental Management: Science, Technology and Implementation. 3rd ed. London: Routledge; 2020. p. 175–92.
  35. 35. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC. Biochar and climate change: A comprehensive review. Renew Sustain Energy Rev. 2021;139:110678. https://doi.org/10.1016/j.rser.2021.110678
  36. 36. Lefebvre D, Fawzy S, Aquije CA, Osman AI, Draper KT, Trabold TA. Biomass residue to carbon dioxide removal: Quantifying the global impact of biochar. Biochar. 2023;5(1):65. https://doi.org/10.1007/s42773-023-00258-2
  37. 37. Biederman L, Harpole W. Interactions between biochar and agricultural management practices: Implications for carbon sequestration and soil health. Agric Ecosyst Environ. 2022;353:107049.
  38. 38. Cornelissen G, Kuzyakov Y, Hale SE, Camps-Arbestain M. Biochar in agriculture: Benefits, risks and management options. Annu Rev Environ Resour. 2023;48:153–82. https://doi.org/10.1146/annurev-environ-012720-020104
  39. 39. Yu Y, Li J, Zhou Z, Zeng L, Zhang C. Estimation of the value of ecosystem carbon sequestration services under different scenarios in the central China (the Qinling-Daba mountain area). Sustainability. 2019;12(1):337. https://doi.org/10.3390/su12010337
  40. 40. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC. Pyrolysis for biochar production: A review of process fundamentals. Chem Eng Res Des. 2020;152:190–217. https://doi.org/10.1016/j.cherd.2019.09.026
  41. 41. Lehmann J, Joseph S. Biochar for environmental management: Science, technology and implementation. 3rd ed. Routledge; 2021.
  42. 42. Purakayastha TJ, Bera T, Dey S, Pande P, Kumari S, Bhowmik A. Biochar aided priming of carbon and nutrient availability in three soil orders of India. Sci Rep. 2024;14(1):8420. https://doi.org/10.1038/s41598-024-56618-w
  43. 43. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, et al. Hydrothermal carbonization: A sustainable approach for biomass valorization. Green Chem. 2022;24(3):1002–23.
  44. 44. Navnage N, Mallick A, Das A, Pramanik B, Debnath S. Soil reclamation and crop production in arsenic contaminated area using biochar and mycorrhiza. In: Arsenic Toxicity Remediation: Sustainable Nexus Approach. Cham: Springer Nature Switzerland; 2024. p. 261–80. https://doi.org/10.1007/978-3-031-52614-5_13
  45. 45. Zhao S, Shi W, Qiao F, Wang C, An Y, Zhang L. Temporal and spatial changes and trend predictions of forest carbon sequestration efficiency in China based on the carbon neutrality goal. Forests. 2023;14(12):2387. https://doi.org/10.3390/f14122387
  46. 46. Waluyo J, Purba IT, Linanggeng ZA, Maulana ML, Kanchanatip E, Yan M, et al. Biomass pyrolysis: A comprehensive review of production methods, derived products and sustainable applications in advanced materials. ASEP J. 2024. https://doi.org/10.14416/j.asep.2024.11.009
  47. 47. Rasaq WA, Okpala CO, Igwegbe CA, Białowiec A. Catalyst-enhancing hydrothermal carbonization of biomass for hydrochar and liquid fuel production—A review. Materials. 2024;17(11):2579. https://doi.org/10.3390/ma17112579
  48. 48. Choudhary TK, Khan KS, Hussain Q, Ashfaq M, Saqlain CM. Biochars induced changes in CO2 evolution and biochemical properties of an alkaline subtropical soil. J Soil Sci Plant Nutr. 2024;1–6. https://doi.org/10.1007/s42729-024-02179-w
  49. 49. Mukherjee A, Singh B, Brown R, Zhang H. Agricultural residue-derived biochar for soil amendment: A review. J Environ Manage. 2023;300:113727. https://doi.org/10.1016/j.jenvman.2021.113727
  50. 50. Muñoz C, Ginebra M, Zagal E. Variation of greenhouse gases fluxes and soil properties with the addition of biochar from farm-wastes in volcanic and non-volcanic soils. Sustainability. 2019;11:1831. https://doi.org/10.3390/su11071831
  51. 51. Blanco-Canqui H. Biochar and soil physical properties. Soil Sci Soc Am J. 2017;81(4):687–711. https://doi.org/10.2136/sssaj2017.01.0017
  52. 52. Karthikeyan B, Saliha BB, Kannan P, Vellaikumar S. Effect of biochar composite and organic sources on soil properties and yield of bhendi (Abelmoschus esculentus L.). J Appl Nat Sci. 2021;13(4):1198–205. https://doi.org/10.31018/jans.v13i4.2972
  53. 53. Major J, Lehmann J, Rondon M, Goodale C. Soil type and biochar properties influence soil carbon sequestration: A meta-analysis. Soil Sci Soc Am J. 2021;85(6):1605–20.
  54. 54. Bhattacharyya PN, Sandilya SP, Sarma B, Pandey AK, Dutta J, Mahanta K, et al. Biochar as soil amendment in climate-smart agriculture: Opportunities, future prospects and challenges. J Soil Sci Plant Nutr. 2024;24(1):135–58. https://doi.org/10.1007/s42729-024-01629-9
  55. 55. Alghamdi AG, Alomran A, Ibrahim HM, Alkhasha A, Alasmary Z. Date palm waste-derived biochar for improving hydrological properties of sandy soil under saturated and unsaturated conditions. Sustainability. 2024;16(24):11081. https://doi.org/10.3390/su162411081
  56. 56. Xia M, Chen Z, Chen Y, Yang H, Chen W, Chen H. Effect of various potassium agents on product distributions and biochar carbon sequestration of biomass pyrolysis. Energy. 2024;289:130012. https://doi.org/10.1016/j.energy.2023.130012
  57. 57. Amin AE, Eissa MA. Biochar effects on nitrogen and phosphorus use efficiencies of zucchini plants grown in a calcareous sandy soil. J Soil Sci Plant Nutr. 2017;17(4):912–21.
  58. 58. Karimi A, Moezzi A, Chorom M, Enayatizamir N. Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. J Soil Sci Plant Nutr. 2019;19:851–64. https://doi.org/10.1007/s42729-019-00129-5
  59. 59. Du Y, Feng Y, Xiao Y. Interaction between biochar of different particle sizes and clay minerals in changing biochar physicochemical properties and cadmium sorption capacity. J Clean Prod. 2023;428:139348. https://doi.org/10.1016/j.jclepro.2023.139348
  60. 60. Aakash Ravi, Jeberlin Prabina B, Gomathy M, Ramesh PT, Hemalatha M. Plant probiotic microbes - trending microbes for plant growth and value addition of compost- a review. Plant Sci Today. 2024;11(3). https://doi.org/10.14719/pst.4523
  61. 61. Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, et al. Carbon sequestration strategies in soil using biochar: Advances, challenges and opportunities. Environ Sci Technol. 2023;57(31):11357–72. https://doi.org/10.1021/acs.est.3c02620
  62. 62. Palacios-Hugo R, Calle-Maravi JL, Césare-Coral MF, Iparraguirre J, Virú-Vásquez P. Physicochemical characterization and stability of biochar obtained from 5 species of forest biomass in Peru. Environ Res Eng Manag. 2023;79(3):35–51. https://doi.org/10.5755/j01.erem.79.3.33084
  63. 63. Feng W, Wang T, Yang F, Cen R, Liao H, Qu Z. Effects of biochar on soil evaporation and moisture content and the associated mechanisms. Environ Sci Eur. 2023;35(1):66. https://doi.org/10.1186/s12302-023-00713-0
  64. 64. Azzi ES, Li H, Cederlund H, Karltun E, Sundberg C. Modelling biochar long-term carbon storage in soil with harmonized analysis of decomposition data. Geoderma. 2024;441:116761. https://doi.org/10.1016/j.geoderma.2023.116761
  65. 65. Adhikari S, Mahmud MP, Nguyen MD, Timms W. Evaluating fundamental biochar properties in relation to water holding capacity. Chemosphere. 2023;328:138620. https://doi.org/10.1016/j.chemosphere.2023.138620
  66. 66. Boraah N, Chakma S, Kaushal P. Optimum features of wood-based biochars: A characterization study. J Environ Chem Eng. 2023;11(3):109976. https://doi.org/10.1016/j.jece.2023.109976
  67. 67. Chen Y, Zhan B, Guo B, Wang C, Li H, Tian D, et al. Accelerated carbonation curing of biochar-cement mortar: Effects of biochar pyrolysis temperatures on carbon sequestration, mechanical properties and microstructure. Constr Build Mater. 2024;449:138446. https://doi.org/10.1016/j.conbuildmat.2024.138446
  68. 68. Yuan C, Gao B, Peng Y, Gao X, Fan B, Chen Q. A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties. Sci Total Environ. 2021;756:144058. https://doi.org/10.1016/j.scitotenv.2020.144058
  69. 69. Sun Y, Xu Z, He M, Alessi DS, Tsang DC. Unlocking the solution-phase molecular transformation of biochar during intensive rainfall events: Implications for the long-term carbon cycle under climate change. Sci Total Environ. 2024;176708. https://doi.org/10.1016/j.scitotenv.2024.176708
  70. 70. Li X, Aguila LC, Wu D, Lie Z, Xu W, Tang X, et al. Carbon sequestration and storage capacity of Chinese fir at different stand ages. Sci Total Environ. 2023;904:166962. https://doi.org/10.1016/j.scitotenv.2023.166962
  71. 71. Rajapaksha AU, Ok YS, El-Naggar A, Kim H, Song F, Kang S, et al. Dissolved organic matter characterization of biochar produced from different feedstock materials. J Environ Manage. 2019;233:393–9. https://doi.org/10.1016/j.jenvman.2018.12.069
  72. 72. Yang S, Bai Y, Alatalo JM, Shi Y, Yang Z. Exploring an assessment framework for the supply-demand balance of carbon sequestration services under land use change: Towards carbon strategy. Ecol Indic. 2024;165:112211. https://doi.org/10.1016/j.ecolind.2024.112211
  73. 73. Obia A, Cornelissen G, Martinsen V, Smebye AB, Mulder J. Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol. Soil Tillage Res. 2020;197:104521. https://doi.org/10.1016/j.still.2019.104521
  74. 74. Xie Z, Shah F, Zhou C. Combining rice straw biochar with leguminous cover crop as green manure and mineral fertilizer enhances soil microbial biomass and rice yield in South China. Front Plant Sci. 2022;13:778738. https://doi.org/10.3389/fpls.2022.778738
  75. 75. Liang X, Wang C, Wang H, Qiu X, Ji H, Ju H, et al. Synergistic effect on soil health from combined application of biogas slurry and biochar. Chemosphere. 2023;343:140228. https://doi.org/10.1016/j.chemosphere.2023.140228

Downloads

Download data is not yet available.