Research Articles
Early Access
High-alkaline coconut shell biochar modifies nutrient availability-retention and enzymatic activity in calcareous soil: A rapid incubation soil test
Navojoa Academic Unit, Sonora State University, Navojoa 85875, Sonora, Mexico
Department of Botany, Autonomous Agrarian University Antonio Narro, Saltillo 25315, Coahuila, Mexico; Conahcyt's National Laboratory of Plant Ecophysiology and Food Security (LANCEVSA), Autonomous Agrarian University Antonio Narro, Saltillo 25315, Mexico
Department of Horticulture, Autonomous Agrarian University Antonio Narro, Saltillo 25315, Coahuila, Mexico
National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Valle del Fuerte Experimental Field, Los Mochis 81110, Sinaloa, Mexico
Department of Botany, Autonomous Agrarian University Antonio Narro, Saltillo 25315, Coahuila, Mexico
Abstract
Biochar (BC) is a solid by-product of the pyrolysis of organic matter and has several potential benefits. However, its high pH may also allow its use in calcareous soils. This study aimed to verify the impact of four doses (0, 10, 30 and 50 g·kg-1) of coconut shell BC (pyrolyzed to 500 °C, pH 10.3) on the nutrient availability, retention and enzymatic activity of a calcareous soil with low fertility. The selected response variables were pH, electrical conductivity (EC), oxidation-reduction potential (Eh) of leachate and soil, phosphatase (PHO), arylsulfatase (ARY), fluorescein diacetate (FDA) activity and nutrient content in the soil and leachates. The experiment was carried out for 377 days under laboratory conditions in a pot test using calcareous soil (pH 8.03). In the leachates, EC decreased with the addition of 50 g·kg-1 BC. In the soil, an increase in Olsen-P (120 %), NO3- (42.5 %), K+ (96.3 %) and Cu2+ (304.2 %) content was observed with 50 g·kg-1 BC. The 30 g·kg-1 BC treatment increased 47.5 % NO3-, 62.5 % K+ and 137.5 % Cu2+ contents. BC reduced the leaching of NO3- (82 %), NH4+ (14.3 %), Olsen-P (21.8 %), Mg2+ (24.1 %), SO42- (44.2 %), Ca2+ (18 %), Fe (33 %) and B (93 %). Finally, BC at 10 g·kg-1 increased ARY and FDA activities. The use of commercially manufactured coconut shell BC (30 and 50 g·kg-1) is a viable alternative to improve nutrient availability in calcareous soils without significantly altering the naturally high pH of calcareous soils.
References
- 1. Hag Husein H, Lucke B, Bäumler R, Sahwan W. A contribution to soil fertility assessment for arid and semi-Arid lands. Soil Syst. 2021;5(3):42. https://doi.org/10.3390/soilsystems5030042
- 2. Li Y, Gupta R, Zhang Q, You S. Review of biochar production via crop residue pyrolysis: Development and perspectives. Bioresour Technol. 2023;369:128423. https://doi.org/10.1016/j.biortech.2022.128423
- 3. Joseph S, Cowie AL, Van Zwieten L, Bolan N, Budai A, Buss W, et al. How biochar works and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy. 2021;13(11):1731-64. https://doi.org/10.1111/gcbb.12885
- 4. Karimi A, Moezzi A, Chorom M, Enayatizamir N. Application of biochar changed the status of nutrients and biological activity in a calcareous soil. J Soil Sci Plant Nutr. 2020;20(2):450-9. https://doi.org/10.1007/s42729-019-00129-5
- 5. Kuo YL, Lee CH, Jien SH. Reduction of nutrient leaching potential in coarse-textured soil by using biochar. Water. 2020;12(7):2012. https://doi.org/10.3390/w12072012
- 6. Kandel A, Dahal S, Mahatara S. A review on biochar as a potential soil fertility enhancer to agriculture. Arch Agric Environ Sci. 2021;6(1):108-13. https://doi.org/10.26832/24566632.2021.0601014
- 7. Fertilab. Manual de muestreo de suelo, planta y agua (Manual for soil, plant and water sampling) [Internet]. 2024 [cited 2025 Aug 1]. Available from: https://www.fertilab.com.mx/Informacion/Fichas-de-muestreo
- 8. Antonious GF, Turley ET, Dawood MH. Monitoring soil enzymes activity before and after animal manure application. Agriculture. 2020;10(5):166. https://doi.org/10.3390/agriculture10050166
- 9. Tabatabai MA, Bremner JM. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1969;1(4):301-7. https://doi.org/10.1016/0038-0717(69)90012-1
- 10. Tabatabai MA, Bremner JM. Arylsulfatase activity of soils. Soil Sci Soc Am J. 1970;34(2):225-29. https://doi.org/10.2136/sssaj1970.03615995003400020016x
- 11. Adam G, Duncan H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem. 2001;33(7-8):943-51. https://doi.org/10.1016/S0038-0717(00)00244-3
- 12. Das SK, Ghosh GK, Avasthe R, Sinha K. Morpho-mineralogical exploration of crop, weed and tree derived biochar. J Hazard Mater. 2021;407:124370. https://doi.org/10.1016/j.jhazmat.2020.124370
- 13. Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons Ltd; 2000. p. 10815-37.
- 14. Khadem A, Raiesi F, Besharati H, Khalaj MA. The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar. 2021;3(1):105-16. https://doi.org/10.1007/s42773-020-00076-w
- 15. Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA. Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol. 2010;44(9):3324-31. https://doi.org/10.1021/es903016y
- 16. Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, et al. An investigation into the reactions of biochar in soil. Soil Res. 2010;48(7):501-15. https://doi.org/10.1071/SR10009
- 17. Hammerschmiedt T, Holatko J, Pecina V, Huska D, Latal O, Kintl A, et al. Assessing the potential of biochar aged by humic substances to enhance plant growth and soil biological activity. Chem Biol Technol Agric. 2021;8(1):46. https://doi.org/10.1186/s40538-021-00242-7
- 18. Karimi A, Moezzi A, Chorom M, Enayatizamir N. Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. J Soil Sci Plant Nutr. 2019;19(4):851-64. https://doi.org/10.1007/s42729-019-00084-1
- 19. Wang X, Ding J, Han L, Tan J, Ge X, Nan Q. Biochar addition reduces salinity in salt-affected soils with no impact on soil pH: A meta-analysis. Geoderma. 2024;443:116845. https://doi.org/10.1016/j.geoderma.2024.116845
- 20. Xu Z, Tsang DCW. Redox-induced transformation of potentially toxic elements with organic carbon in soil. Carbon Res. 2022;1(1):9. https://doi.org/10.1007/s44246-022-00010-8
- 21. Rasuli F, Owliaie H, Najafi-Ghiri M, Adhami E. Effect of biochar on potassium fractions and plant-available P, Fe, Zn, Mn and Cu concentrations of calcareous soils. Arid L Res Manag. 2022;36(1):1-26. https://doi.org/10.1080/15324982.2021.1936689
- 22. Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, Palansooriya KN, et al. Biochar and its importance on nutrient dynamics in soil and plant. Biochar. 2020;2(4):379-420. https://doi.org/10.1007/s42773-020-00065-z
- 23. Zhao P, Wang S, Liu D, Li H, Han S, Li M. Study on influence mechanism of biochar on soil nitrogen conversion. Environ Pollut Bioavailab. 2022;34(1):419-32. https://doi.org/10.1080/26395940.2022.2125445
- 24. Cai J, Luo W, Liu H, Feng X, Zhang Y, Wang R, et al. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmos Environ. 2017;170:312-18. https://doi.org/10.1016/j.atmosenv.2017.09.054
- 25. Gelardi DL, Ainuddin IH, Rippner DA, Patiño JE, Abou Najm M, Parikh SJ. Biochar alters hydraulic conductivity and impacts nutrient leaching in two agricultural soils. SOIL. 2021;7(2):811-25. https://doi.org/10.5194/soil-7-811-2021
- 26. Muhammad I, Lv JZ, Yang L, Ahmad S, Farooq S, Zeeshan M, et al. Low irrigation water minimizes the nitrate nitrogen losses without compromising the soil fertility, enzymatic activities and maize growth. BMC Plant Biol. 2022;22(1):159. https://doi.org/10.1186/s12870-022-03548-2
- 27. Gao S, DeLuca HT. Influence of biochar on soil nutrient transformations, nutrient leaching and crop yield. Adv Plants Agric Res. 2016;4(5):348-62. https://doi.org/10.15406/apar.2016.04.00150
- 28. Yang L, Wu Y, Wang Y, An W, Jin J, Sun K, et al. Effects of biochar addition on the abundance, speciation, availability and leaching loss of soil phosphorus. Sci Total Environ. 2021;758:143657. https://doi.org/10.1016/j.scitotenv.2020.143657
- 29. Nguyen BT, Phan BT, Nguyen TX, Nguyen VN, Van Tran T, Bach QV. Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. J Soils Sediments. 2020;20(1):297-307. https://doi.org/10.1007/s11368-019-02366-8
- 30. Xu M, Wu J, Yang G, Zhang X, Peng H, Yu X, et al. Biochar addition to soil highly increases P retention and decreases the risk of phosphate contamination of waters. Environ Chem Lett. 2019;17(1):533-41. https://doi.org/10.1007/S10311-018-0802-Z
- 31. Martos S, Mattana S, Ribas A, Albanell E, Domene X. Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields: a case study in a Mediterranean calcareous soil. J Soils Sediments. 2020;20(1):220-33. https://doi.org/10.1007/s11368-019-02400-9
- 32. Adeli A, Brooks JP, Miles D, Mlsna T, Quentin R, Jenkins JN. Effectiveness of combined biochar and lignite with poultry litter on soil carbon sequestration and soil health. Open J Soil Sci. 2023;13(2):124-49. https://doi.org/10.4236/ojss.2023.132006
- 33. Amery F, Debode J, Ommeslag S, Visser R, De Tender C, Vandecasteele B. Biochar for circular horticulture: Feedstock related effects in soilless cultivation. Agronomy. 2021;11(4):629. https://doi.org/10.3390/agronomy11040629
- 34. Purkaystha J, Prasher S, Afzal MT, Nzediegwu C, Dhiman J. Wheat straw biochar amendment significantly reduces nutrient leaching and increases green pepper yield in a less fertile soil. Environ Technol Innov. 2022;28:102655. https://doi.org/10.1016/j.eti.2022.102655
- 35. Ojeda G, Mattana S, Àvila A, Alcañiz JM, Volkmann M, Bachmann J. Are soil-water functions affected by biochar application? Geoderma. 2015;249-250:1-11. https://doi.org/10.1016/j.geoderma.2015.02.014
- 36. Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. 2020;19(1):191-215. https://doi.org/10.1007/s11157-020-09523-3
- 37. Malik KM, Khan KS, Akhtar MS, Ahmed ZI. Sulfur distribution and availability in alkaline subtropical soils affected by organic amendments. J Soil Sci Plant Nutr. 2020;20(4):2253-66. https://doi.org/10.1007/s42729-020-00292-0
- 38. Elzobair KA, Stromberger ME, Ippolito JA. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress. Chemosphere. 2016;142:114-9. https://doi.org/10.1016/j.chemosphere.2015.03.018
- 39. Cui Y, Zhang Y, Duan C, Wang X, Zhang X, Ju W, et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage Res. 2020;197:104463. https://doi.org/10.1016/j.still.2019.104463
- 40. Puissant J, Jones B, Goodall T, Mang D, Blaud A, Gweon HS, et al. The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biol Biochem. 2019;138:107601. https://doi.org/10.1016/j.soilbio.2019.107601
Downloads
Download data is not yet available.