Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Climate resilience in natural enemies: Key players of ecological control

DOI
https://doi.org/10.14719/pst.8943
Submitted
17 April 2025
Published
07-10-2025

Abstract

Natural enemies, such as predators and parasitoids, are essential for good agricultural ecosystems by regulating pest populations and maintaining ecological balance, which helps in reducing reliance on chemical pesticides and promotes sustainable farming practices. Climate change affects these organisms, disturbing insect distribution patterns, causing changes in their life cycles and potentially misaligning natural enemies with hosts or prey due to shifts in environmental conditions. Such disruptions reduce their effectiveness in pest control, undermining agroecosystem balance. However, generalist natural enemies (e.g., lacewings, spiders, ladybugs) can adapt more flexibly to climate shifts due to their broader diet and habitat range, offering resilience against such changes. The review explores strategies to enhance the climate resilience of natural enemies, including habitat management and conservation practices they depend on. Proactive measures to safeguard these organisms are vital for maintaining their role in pest regulation despite climate change. Strengthening the adaptability of natural enemies can ensure continued natural, sustainable pest control, supporting food security, sustainable agricultural practices and biodiversity protection. The paper also elaborates on how climate-smart pest management (CSPM) can improve pest control as the climate changes. By helping these organisms adapt through CSPM, these beneficial insects may continue to play a key role in natural pest management, which supports food security, sustainable farming and biodiversity and the environment.

References

  1. 1. Malhi GS, Kaur M, Kaushik P. Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability. 2021;13(3):1318. https://doi.org/10.3390/su13031318
  2. 2. Sharma HC. Climate change effects on insects:implications for crop protection and food security. J. Crop Improv. 2014;28(2):229–59. https://doi.org/10.1080/15427528.2014.881205
  3. 3. Arora NK. Impact of climate change on agriculture production and its sustainable solutions. Environ Sustain. 2019;2(2):95–6. https://doi.org/10.1007/s42398-019-00078-w
  4. 4. Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. The impact of climate change on agricultural insect pests. Insects. 2021;12(5):440. https://doi.org/10.3390/insects12050440
  5. 5. Kurukulasuriya P, Rosenthal S. Climate change and agriculture: a review of impacts and adaptations [Internet]. Washington (DC): World Bank; 2013 [cited 2025 Aug 11]. (Environment department papers; no. 91. Climate change series). Available from:http://hdl.handle.net/10986/16616
  6. 6. Harvey JA, Heinen R, Gols R, Thakur MP. Climate change‐mediated temperature extremes and insects: From outbreaks to breakdowns. Glob. Chang. Biol. 2020;26(12):6685–701. https://doi.org/10.1111/gcb.15377
  7. 7. Pureswaran DS, Roques A, Battisti A. Forest insects and climate change. Curr For Rep. 2018;4:35–50. https://doi.org/10.1007/s40725-018-0075-6
  8. 8. Feit B, Blüthgen N, Daouti E, Straub C, Traugott M, Jonsson M. Landscape complexity promotes resilience of biological pest control to climate change. Proc R Soc B. 2021;288(1951):20210547. https://doi.org/10.1098/rspb.2021.0547
  9. 9. Shrestha S. Effects of climate change on agricultural insect pests. Acta Sci Agric. 2019;3(12):74–80. https://doi.org/10.31080/ASAG.2019.03.0727
  10. 10. Douxchamps S, Debevec L, Giordano M, Barron J. Monitoring and evaluation of climate resilience for agricultural development–A review of currently available tools. World Dev. Perspect. 2017;5:10–23. https://doi.org/10.1016/j.wdp.2017.02.001
  11. 11. Rao CS, Kareemulla K, Krishnan P, Murthy GRK, Ramesh P, Ananthan PS. Agro-ecosystem-based sustainability indicators for climate resilient agriculture in India: a conceptual framework. Ecol Indic 2019;105:621–33. https://doi.org/10.1016/j.ecolind.2018.06.038
  12. 12. Gardiner MM, Prajzner SP, Burkman CE, Albro S, Grewal PS. Vacant land conversion to community gardens: influences on generalist arthropod predators and biocontrol services in urban green spaces. Urban Ecosyst. 2014;17:101–22. https://doi.org/10.1007/s11252-013-0303-6
  13. 13. Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D. Maximizing arthropod‐mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ. 2009;7(4):196–203. https://doi.org/10.1890/080035
  14. 14. Macfadyen S, Muller W. Edges in agricultural landscapes:species interactions and movement of natural enemies. PLoS One. 2013;8(3):e59659. https://doi.org/10.1371/journal.pone.0059659
  15. 15. Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst. 1980;11:41–65. https://doi.org/10.1146/annurev.es.11.110180.000353
  16. 16. Macfadyen S, Davies AP, Zalucki MP. Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Sci. 2015;22(1):20–34. https://doi.org/10.1111/1744-7917.12174
  17. 17. Landis DA, Wratten SD, Gurr GM. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol. 2000;45(1):175–01. https://doi.org/10.1146/annurev.ento.45.1.175
  18. 18. Vet LEM, Dicke M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol. 1992;37:141–72. https://doi.org/10.1146/annurev.en.37.010192.001041
  19. 19. Sridhar J, Kumar KK, Murali-Baskaran RK, Senthil-Nathan S, Sharma S, Nagesh M. Impact of climate change on communities, response and migration of insects, nematodes, vectors and natural enemies in diverse ecosystems. In: Singh DP, Singh AK, Kumar S, editors. Global climate change: resilient and smart agriculture. Singapore: Springer; 2020. p. 69–93. https://doi.org/10.1007/978-981-32-9856-9_4
  20. 20. Martin EA, Reineking B, Seo B, Steffan-Dewenter I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc Natl Acad Sci U S A. 2013;110(14):5534–9. https://doi.org/10.1073/pnas.1215725110
  21. 21. Dukes JS, Pontius J, Orwig D, Garnas JR, Rodgers VL, Brazee N. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can J For Res. 2009;39(2):231–48. https://doi.org/10.1139/X08-171
  22. 22. Jamieson MA, Trowbridge AM, Raffa KF, Lindroth RL. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 2012;160(4):1719–27. https://doi.org/10.1104/pp.112.206524
  23. 23. Thomson LJ, Macfadyen S, Hoffmann AA. Predicting the effects of climate change on natural enemies of agricultural pests. Biol Cont. 2010;52(3):296–306. https://doi.org/10.1016/j.biocontrol.2009.01.022
  24. 24. Boullis A, Francis F, Verheggen FJ. Climate change and tritrophic interactions: Will modifications to greenhouse gas emissions increase the vulnerability of herbivorous insects to natural enemies? Environ Entomol. 2015;44(2):277–86. https://doi.org/10.1093/ee/nvu019
  25. 25. Barton BT, Ives AR. Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology. 2014;95(6):1479–84. https://doi.org/10.1890/13-1977.1
  26. 26. Hance T, van Baaren J, Vernon P, Boivin G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 2007;52(1):107–26. https://doi.org/10.1146/annurev.ento.52.110405.091333
  27. 27. Luis CRA, Xu LI, Komivi A, Bamisile BS, Moreano JPS, Zhiyang L. Host–parasitoid phenology, distribution, and biological control under climate change. Insects. 2023;14(1):6.
  28. 28. Ramos Aguila LC, Hussain M, Huang W, Lei L, Bamisile BS, Wang F. Temperature-dependent demography and population projection of Tamarixia radiata (Hymenoptera: Eulophidea) reared on Diaphorina citri (Hemiptera: Liviidae). J Econ Entomol. 2020;113(1):55–63. https://doi.org/10.1093/jee/toz247
  29. 29. Biale H, Geden CJ, Chiel E. Heat adaptation of the house fly (Diptera: Muscidae) and its associated parasitoids in Israel. J Med Entomol. 2020;57(1):113–21. https://doi.org/10.1093/jme/tjz152
  30. 30. Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB. Increase in crop losses to insect pests in a warming climate. Science. 2018;361(6405):916–9. https://doi.org/10.1126/science.aat3466
  31. 31. Neven LG. Physiological responses of insects to heat. Postharvest Biol Technol. 2000;21(1):103–11. https://doi.org/10.1016/S0925-5214(00)00169-1
  32. 32. González‐Tokman D, Córdoba‐Aguilar A, Dáttilo W, Lira‐Noriega A, Sánchez‐Guillén RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev. 2020;95(3):802–21. https://doi.org/10.1111/brv.12588
  33. 33. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R. Climate change 2014:synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2014.
  34. 34. Abdala‐Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH. Tri‐trophic interactions: bridging species, communities and ecosystems. Ecol Lett. 2019;22(12):2151–67. https://doi.org/10.1111/ele.13392
  35. 35. Rosenblatt AE, Schmitz OJ. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol Evol. 2016;31(12):965–75. https://doi.org/10.1016/j.tree.2016.09.009
  36. 36. Vidal MC, Murphy SM. Bottom‐up vs. top‐down effects on terrestrial insect herbivores: a meta‐analysis. Ecol Lett. 2018;21(1):138–50. https://doi.org/10.1111/ele.12874
  37. 37. Holton MK, Lindroth RL, Nordheim EV. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2, O 3, and plant genotype. Oecologia. 2003;137:233–44. https://doi.org/10.1007/s00442-003-1351-z
  38. 38. Cornelissen T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop Entomol. 2011;40:155–63. https://doi.org/10.1590/S1519-566X2011000200001
  39. 39. Chidawanyika F, Mudavanhu P, Nyamukondiwa C. Global climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions. Front Ecol Evol. 2019;7:80. https://doi.org/10.3389/fevo.2019.00080
  40. 40. Selvaraj S, Ganeshamoorthi P, Pandiaraj T. Potential impacts of recent climate change on biological control agents in agro-ecosystem: a review. Int J Biodivers Conserv. 2013;5(12):845–52.
  41. 41. Furlong MJ, Zalucki MP. Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Curr Opin Insect Sci. 2017;20:39–44. https://doi.org/10.1016/j.cois.2017.03.006
  42. 42. Jun Chen F, Wu G, Parajulee MN, Ge F. Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Sci Technol. 2007;17(3):313–24. https://doi.org/10.1080/09583150701211814
  43. 43. Draper AM, Weissburg MJ. Impacts of global warming and elevated CO2 on sensory behaviour in predator-prey interactions: a review and synthesis. Front Ecol Evol. 2019;7:72. https://doi.org/10.3389/fevo.2019.00072
  44. 44. Barnett KL, Facey SL. Grasslands, invertebrates, and precipitation: a review of the effects of climate change. Front Plant Sci. 2016;7:1196. https://doi.org/10.3389/fpls.2016.01196
  45. 45. Sylvain ZA, Wall DH, Cherwin KL, Peters DPC, Reichmann LG, Sala OE. Soil animal responses to moisture availability are largely scale, not ecosystem-dependent: insight from a cross‐site study. Glob Chang Biol. 2014;20(8):2631–43. https://doi.org/10.1111/gcb.12522
  46. 46. Melguizo-Ruiz N, Jiménez-Navarro G, Moya-Laraño J. Beech cupules as keystone structures for soil fauna. Peer J. 2016;4:e2562. https://doi.org/10.7717/peerj.2562
  47. 47. van Doan C, Pfander M, Guyer AS, Zhang X, Maurer C, Robert CAM. Natural enemies of herbivores maintain their biological control potential under short‐term exposure to future CO2, temperature, and precipitation patterns. Ecol Evol. 2021;11(9):4182–92. https://doi.org/10.1002/ece3.7314
  48. 48. Hoffmann AA, Sgrò CM, Kristensen TN. Revisiting adaptive potential, population size, and conservation. Trends Ecol Evol. 2017;32(7):506–17. https://doi.org/10.1016/j.tree.2017.03.012
  49. 49. Barton BT. Local adaptation to temperature conserves top-down control in a grassland food web. Proc R Soc B Biol Sci. 2011;278(1721):3102–7. https://doi.org/10.1098/rspb.2011.0030
  50. 50. Thurman JH, Crowder DW, Northfield TD. Biological control agents in the Anthropocene: current risks and future options. Curr Opin Insect Sci. 2017;23:59–64. https://doi.org/10.1016/j.cois.2017.07.006
  51. 51. Jonsson M, Kaartinen R, Straub CS. Relationships between natural enemy diversity and biological control. Curr Opin Insect Sci. 2017;20:1–6. https://doi.org/10.1016/j.cois.2017.01.001
  52. 52. Schmitz OJ, Barton BT. Climate change effects on behavioural and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol Cont. 2014;75:87–96. https://doi.org/10.1016/j.biocontrol.2013.10.001
  53. 53. Tauber MJ. Seasonal adaptations of insects. Oxford: Oxford University Press; 1986:7–10.
  54. 54. Heeb L, Jenner E, Cock MJW. Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. J Pest Sci. (2004). 2019;92(3):951–69. https://doi.org/10.1007/s10340-019-01083-y
  55. 55. Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H. Adapting agriculture to climate change. Proc Natl Acad Sci U S A. 2007;104(50):19691–6. https://doi.org/10.1073/pnas.0701890104
  56. 56. Ziska LH. Climate, CO2 and invasive weed management. In: Dukes JS, Mooney HA, editors. Invasive species and global climate change. Wallingford (UK): CABI; 2014. p. 293–304. https://doi.org/10.1079/9781780641645.0293
  57. 57. Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS. Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Front Plant Sci. 2017;8:95. https://doi.org/10.3389/fpls.2017.00095
  58. 58. Anwar MP, Islam AKMM, Yeasmin S, Rashid MH, Juraimi AS, Ahmed S, et al. Weeds and their responses to management efforts in a changing climate. Agronomy. 2021;11(10):1921. https://doi.org/10.3390/agronomy11101921
  59. 59. Paredes D, Cayuela L, Gurr GM, Campos M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests? PLoS One. 2015;10(2):e0117265. https://doi.org/10.1371/journal.pone.0117265
  60. 60. Dyer LA, Richards LA, Short SA, Dodson CD. Effects of CO2 and temperature on tritrophic interactions. PLoS One. 2013;8(4):e62528. https://doi.org/10.1371/journal.pone.0062528
  61. 61. Moreau J, Richard A, Benrey B, Thiéry D. Host plant cultivar of the grapevine moth Lobesia botrana affects the life history traits of an egg parasitoid. Biol Cont. 2009;50(2):117–22. https://doi.org/10.1016/j.biocontrol.2009.03.017
  62. 62. Altieri MA. Insect pest management in the agroecosystems of the future. Atti Accad Naz Ital Entomol. 2012;60(40):137–44.
  63. 63. Bouri M, Arslan KS, Şahin F. Climate-smart pest management in sustainable agriculture: Promises and challenges. Sustainability. 2023;15(5):4592. https://doi.org/10.3390/su15054592
  64. 64. Lin BB. Resilience in Agriculture through crop diversification: adaptive management for environmental change. BioScience [Internet]. 2011 [cited 2025 Jul 28]; 61(3):183–93. Available from: https://doi.org/10.1525/bio.2011.61.3.4

Downloads

Download data is not yet available.