Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

The role of croplands in carbon cycling: A review of net ecosystem carbon budget

DOI
https://doi.org/10.14719/pst.8958
Submitted
18 April 2025
Published
25-08-2025 — Updated on 16-09-2025
Versions

Abstract

The Net Ecosystem Carbon Budget (NECB) represents the balance of carbon entering and leaving an ecosystem, thereby determining whether the specific ecosystem is carbon source or sink. This review examines NECB on different croplands of rice, wheat, maize, sugarcane, cotton and sunflower, review highlighting its role on carbon sequestration and climate change mitigation. NECB values vary significantly, ranging from -26460 ± 4587 to 22500 kg C ha-1. Rice cropland systems exhibited positive NECB values (carbon sink) between 572 and 2959 kg C ha-1 under biomass application, while wheat and sugarcane act as carbon sources with values of -4390 ± 105 kg C ha-1 and -26460 ± 4587 kg C ha-1, respectively. Cotton also showed negative NECB (-4940 ± 150 kg C ha-1), whereas sunflower with biochar application achieved 11570.9 ± 334.0 kg C ha-1, compared with control (-19.9 ± 0.6 kg C ha-1). Methodologies such as eddy covariance and static chamber techniques highlighted NECB variability due to environmental and management factors. Although maize under public-private partnership and large-scale farming recorded the highest NECB at 22500 kg C ha-1, similar effective practices such as optimized irrigation, nutrient management and reduced soil disturbance can be practiced in rice cropland systems to enhance their carbon sequestration potential. Moreover, NECB varies across ecosystems and soil types, affecting whether croplands act as carbon sinks or sources. Adapting management practices to local environmental conditions is crucial for improving NECB across different crop systems and achieving sustainable agriculture and climate mitigation goals.

References

  1. 1. Singh P, Benbi DK, Verma G. Nutrient management impacts on nutrient use efficiency and energy, carbon and net ecosystem economic budget of a rice-wheat cropping system in Northwestern India. J Soil Sci Plant Nutr. 2021;21(1):559-77. https://doi.org/10.1007/s42729-020-00383-y
  2. 2. Yokamo S, Milinga AS, Suefo B. Alternative fertilization approaches in enhancing crop productivity and nutrient use efficiency: A review. Arch Agric Environ Sci. 2023;8(2):244-9. https://doi.org/10.26832/24566632.2023.0802022
  3. 3. Lokupitiya E, Denning AS, Schaefer K, Ricciuto D, Anderson R, Arain MA, et al. Carbon and energy fluxes in cropland ecosystems: a model-data comparison. Biogeochemistry. 2016;129:53-76. https://doi.org/10.1007/s10533-016-0219-3
  4. 4. Boryan C, Yang Z, Mueller R, Craig M. Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011;26(5):341-58. https://doi.org/10.1080/10106049.2011.562309
  5. 5. Alzara M, Yosri AM, Alruwaili A, Cuce E, Eldin SM, Ehab A. Dynamo script and a BIM-based process for measuring embodied carbon in buildings during the design phase. Int J Low-Carbon Technol. 2023;18:943-55. https://doi.org/10.1093/ijlct/ctad053
  6. 6. Ceschia E, Béziat P, Dejoux JF, Aubinet M, Bernhofer C, Bodson B, et al. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric Ecosyst Environ. 2010;139(3):363-83. https://doi.org/10.1016/j.agee.2010.09.020
  7. 7. He C, Shu C, Zou J, Li Y. Does the low-carbon construction of cities in China reduce carbon emission intensity? Int J Low-Carbon Technol. 2023;18:253-64. https://doi.org/10.1093/ijlct/ctac131
  8. 8. de la Motte LG, Mamadou O, Beckers Y, Bodson B, Heinesch B, Aubinet M. Rotational and continuous grazing does not affect the total net ecosystem exchange of a pasture grazed by cattle but modifies CO2 exchange dynamics. Agric Ecosyst Environ. 2018;253:157-65. https://doi.org/10.1016/j.agee.2017.11.011
  9. 9. Onyelowe KC, Ebid AM, de Jesús Arrieta Baldovino J, Onyia ME. Hydraulic conductivity predictive model of RHA-ameliorated laterite for solving landfill liner leachate, soil and water contamination and carbon emission problems. Int J Low-Carbon Technol. 2022;17:1134-44. https://doi.org/10.1093/ijlct/ctac077
  10. 10. Wei D, Zhang Y, Gao T, Wang L, Wang X. Reply to Song and Wang: Terrestrial CO2 sink dominates net ecosystem carbon balance of the Tibetan Plateau. Proc Natl Acad Sci USA. 2021;118(46):e2116631118. https://doi.org/10.1073/pnas.2116631118
  11. 11. Jiang F, Ju W, He W, Wu M, Wang H, Wang J, et al. A ten-year global monthly averaged terrestrial NEE inferred from the ACOS GOSAT v9 XCO₂ retrievals (GCAS2021). Earth Syst Sci Data Discuss. 2022:1-38. https://doi.org/10.5194/essd-2022-15
  12. 12. Beckebanze L, Runkle BR, Walz J, Wille C, Holl D, Helbig M, et al. Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment. Biogeosciences. 2022;19(16):3863-76. https://doi.org/10.5194/bg-19-3863-2022
  13. 13. Fernández-Rodríguez D, Fangueiro DP, Peña Abades D, Albarrán Á, Rato-Nunes JM, Martín-Franco C, et al. Effects of combined use of olive mill waste compost and sprinkler irrigation on GHG emissions and net ecosystem carbon budget under different tillage systems. Plants. 2022;11(24):3454. https://doi.org/10.3390/plants11243454
  14. 14. Ishtiaq KS, Troxler TG, Lamb‐Wotton L, Wilson BJ, Charles SP, Davis SE, et al. Modeling net ecosystem carbon balance and loss in coastal wetlands exposed to sea‐level rise and saltwater intrusion. Ecol Appl. 2022;32(8):e2702. https://doi.org/10.1002/eap.2702
  15. 15. Bradford MA, Eash L, Polussa A, Jevon FV, Kuebbing SE, Hammac WA, et al. Testing the feasibility of quantifying change in agricultural soil carbon stocks through empirical sampling. Geoderma. 2023;440:116719. https://doi.org/10.1016/j.geoderma.2023.116719
  16. 16. Emmons LK, Walters S, Hess PG, Lamarque JF, Pfister GG, Fillmore D, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev. 2010;3(1):43-67. https://doi.org/10.5194/gmd-3-43-2010
  17. 17. Whitaker JS, Hamill TM. Ensemble data assimilation without perturbed observations. Mon Weather Rev. 2002;130(7):1913-24. https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
  18. 18. Fan L, Wigneron JP, Ciais P, Chave J, Brandt M, Sitch S, et al. Siberian carbon sink reduced by forest disturbances. Nat Geosci. 2023;16(1):56-62. https://doi.org/10.1038/s41561-022-01087-x
  19. 19. Chi Y, Wu Y, Wang K, Ren Y, Ye H, Yang S, et al. Quantification of uncertainty in short-term tropospheric column density risks for a wide range of carbon monoxide. J Environ Manage. 2024;370:122725. https://doi.org/10.1016/j.jenvman.2024.122725
  20. 20. Singh P, Benbi DK. Response of nutrient management practices on carbon mineralization in relation to changed soil biology under rice-wheat cropping in north-western India. Proc Indian Natl Sci Acad. 2024:1-17. https://doi.org/10.1007/s43538-024-00250-9
  21. 21. Singh G, Singh P, Sodhi GPS. Assessment and analysis of agricultural technology adoption in cotton (Gossypium hirsutum L.) cultivation in southwestern Punjab. Agric Res J. 2021;58(2). https://doi.org/10.5958/2395-146X.2021.00047.8
  22. 22. Khosa MK, Sidhu B, Benbi D. Methane emission from rice fields in relation to management of irrigation water. J Environ Biol. 2011;32(2):169-72.
  23. 23. Shang Q, Yang X, Gao C, Wu P, Liu J, Xu Y, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob Chang Biol. 2011;17(6):2196-210. https://doi.org/10.1111/j.1365-2486.2010.02374.x
  24. 24. Singh P, Benbi DK. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena. 2018;166:171-80. https://doi.org/10.1016/j.catena.2018.04.006
  25. 25. Bhatia M, Meenakshi N, Kaur P, Dhir A. Digital technologies and carbon neutrality goals: An in-depth investigation of drivers, barriers and risk mitigation strategies. J Clean Prod. 2024;451:141946. https://doi.org/10.1016/j.jclepro.2024.141946
  26. 26. Singh P, Benbi DK. Nutrient management effects on organic carbon pools in a sandy loam soil under rice-wheat cropping. Arch Agron Soil Sci. 2018;64(13):1879-91. https://doi.org/10.1080/03650340.2018.1465564
  27. 27. Huang Y, Zhang W, Sun W, Zheng X. Net primary production of Chinese croplands from 1950 to 1999. Ecol Appl. 2007;17(5):1385-92. https://doi.org/10.1890/05-1792
  28. 28. Kavya S, Rani B, Banu M, Jabin P. Carbon sequestration and stabilisation mechanisms in the agricultural soils: A review. Int J Plant Soil Sci. 2023;35:79-94. https://doi.org/10.9734/ijpss/2023/v35i132991
  29. 29. Benbi DK, Toor A, Brar K, Dhall C. Soil respiration in relation to cropping sequence, nutrient management and environmental variables. Arch Agron Soil Sci. 2020;66(13):1873-87. https://doi.org/10.1080/03650340.2019.1701188
  30. 30. Banu M, Rani B, Kavya S, Jabin PN. Biochar: A black carbon for sustainable agriculture. Int J Environ Clim Change. 2023;13(6):418-32. https://doi.org/10.9734/ijecc/2023/v13i61840
  31. 31. Bandyopadhyay PK. Functional behaviour of soil physical parameters for regulating organic C pools. In: Carbon management in tropical and sub-tropical terrestrial systems. Singapore: Springer Singapore; 2019. p. 233-47. https://doi.org/10.1007/978-981-13-9628-1_14
  32. 32. Li L, Li X, Sun Y, Xie Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev. 2022;51(4):1234-52. https://doi.org/10.1039/d1cs00893e
  33. 33. Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, et al. The European carbon balance. Part 3: forests. Glob Change Biol. 2010;16(5):1429-50. https://doi.org/10.1111/j.1365-2486.2009.02056.x
  34. 34. Gao Y, Wang M, Jiang L, Zhao XF, Gao F, Zhao H. Dynamics of carbon budget and meteorological factors of a typical maize ecosystem in Songnen Plain, China. Span J Agric Res. 2023;21(4):4. https://doi.org/10.5424/sjar/2023214-20226
  35. 35. Smith P, Lanigan G, Kutsch WL, Buchmann N, Eugster W, Aubinet M, et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric Ecosyst Environ. 2010;139(3):302-15. https://doi.org/10.1016/j.agee.2010.04.004
  36. 36. Gao Y, Tian J, Pang Y, Liu J. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China. Front Plant Sci. 2017;8:1282. https://doi.org/10.3389/fpls.2017.01282
  37. 37. Haque MM, Biswas JC, Kim SY, Kim PJ. Intermittent drainage in paddy soil: ecosystem carbon budget and global warming potential. Paddy Water Environ. 2017;15:403-11. https://doi.org/10.1007/s10333-016-0558-7
  38. 38. Xin F, Xiao X, Dong J, Zhang G, Zhang Y, Wu X, et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000-2017. Sci Total Environ. 2020;711:135183. https://doi.org/10.1016/j.scitotenv.2019.135183
  39. 39. Nabavi-Pelesaraei A, Rafiee S, Mohtasebi SS, Hosseinzadeh-Bandbafha H, Chau KW. Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. J Clean Prod. 2019;217:742-56. https://doi.org/10.1016/j.jclepro.2019.01.228
  40. 40. Li W, Zhang S, Lu C. Exploration of China's net CO₂ emissions evolutionary pathways by 2060 in the context of carbon neutrality. Sci Total Environ. 2022;831:154909. https://doi.org/10.1016/j.scitotenv.2022.154909
  41. 41. Neogi S, Bhattacharyya P, Nayak A. Characterization of carbon dioxide fluxes in tropical lowland flooded rice ecology. Paddy Water Environ. 2021;19(3):539-52. https://doi.org/10.1007/s10333-021-00853-8
  42. 42. Mandal UK, Bhardwaj AK, Lama TD, Nayak DB, Samui A, Burman D, et al. Net ecosystem exchange of carbon, greenhouse gases, and energy budget in coastal lowland double cropped rice ecology. Soil Tillage Res. 2021;212:105076. https://doi.org/10.1016/j.still.2021.105076
  43. 43. Bhattacharyya P, Neogi S, Roy KS, Dash PK, Tripathi R, Rao KS. Net ecosystem CO₂ exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutr Cycl Agroecosyst. 2013;95:133-44. https://doi.org/10.1007/s10705-013-9553-1
  44. 44. Haque MM, Biswas J, Hwang HY, Kim P. Annual net carbon budget in rice soil. Nutr Cycl Agroecosyst. 2020;116:31-40. https://doi.org/10.1007/s10705-019-10029-w
  45. 45. Food and Agriculture Organisation. Statistics; 2018. http://www.fao.org/faostat/en/#data. QC/visualize. https://doi.org/10.4060/cc2211en
  46. 46. Fan Y, Wei F. Contributions of natural carbon sink capacity and carbon neutrality in the context of net-zero carbon cities: a case study of Hangzhou. Sustainability. 2022;14(5):2680. https://doi.org/10.3390/su14052680
  47. 47. Cassman KG, Harwood RR. The nature of agricultural systems: food security and environmental balance. Food Policy. 1995;20(5):439-54. https://doi.org/10.1016/0306-9192(95)00037-F
  48. 48. Rosenzweig T. Greenhouse gas optimization across a multi-echelon manufacturing and distribution network [dissertation]. Cambridge (MA): Massachusetts Institute of Technology; 2024.
  49. 49. Ruane AC, McDermid S, Rosenzweig C, Baigorria GA, Jones JW, Romero CC, et al. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP Coordinated Climate‐Crop Modeling Project (C3MP). Glob Change Biol. 2014;20(2):394-407. https://doi.org/10.1111/gcb.12412
  50. 50. Pique G, Fieuzal R, Al Bitar A, Veloso A, Tallec T, Brut A, et al. Estimation of daily CO₂ fluxes and of the components of the carbon budget for winter wheat by the assimilation of Sentinel 2-like remote sensing data into a crop model. Geoderma. 2020;376:114428. https://doi.org/10.1016/j.geoderma.2020.114428
  51. 51. Duchemin G, Jorissen FJ, Le Loc'h F, Andrieux-Loyer F, Hily C, Thouzeau G. Seasonal variability of living benthic foraminifera from the outer continental shelf of the Bay of Biscay. J Sea Res. 2008;59(4):297-319. https://doi.org/10.1016/j.seares.2008.03.006
  52. 52. Singh P, Benbi DK. Nutrient management impacts on net ecosystem carbon budget and energy flow nexus in intensively cultivated cropland ecosystems of north-western India. Paddy Water Environ. 2020;18(4):697-715. https://doi.org/10.1007/s10333-020-00812-9
  53. 53. Luo X, Li C, Lin N, Wang N, Chu X, Feng H, et al. Plastic film-mulched ridges and straw-mulched furrows increase soil carbon sequestration and net ecosystem economic benefit in a wheat-maize rotation. Agric Ecosyst Environ. 2023;344:108311. https://doi.org/10.1016/j.agee.2022.108311
  54. 54. Chi J, Maureira F, Waldo S, Pressley SN, Stöckle CO, O'Keeffe PT, et al. Carbon and water budgets in multiple wheat-based cropping systems in the Inland Pacific Northwest US: comparison of CropSyst simulations with eddy covariance measurements. Front Ecol Evol. 2017;5:50. https://doi.org/10.3389/fevo.2017.00050
  55. 55. Kumar R, Srinivas K, Sivaramane N. Assessment of the maize situation, outlook and investment opportunities in India. Hyderabad (India): National Academy of Agricultural Research Management; 2013. p. 133. https://doi.org/10.13140/2.1.3081.8089
  56. 56. Indian Institute of Maize Research. 59th Annual Maize Workshop Report. Pusa Campus; 2016.
  57. 57. Zhang Q, Lei HM, Yang DW, Xiong L, Fang B. Carbon budget assessment of an irrigated wheat and maize rotation cropland with high groundwater table in the North China Plain. Biogeosciences Discuss. 2016;1-52. https://doi.org/10.5194/bg-2016-484
  58. 58. Zhang W, Qiao Y, Lakshmanan P, Yuan L, Liu J, Zhong C, et al. Combing public-private partnership and large-scale farming increased net ecosystem carbon budget and reduced carbon footprint of maize production. Resour Conserv Recycl. 2022;184:106411. https://doi.org/10.1016/j.resconrec.2022.106411
  59. 59. Zhang W, Li H, Liang L, Wang S, Lakshmanan P, Jiang Z, et al. An integrated straw-tillage management increases maize crop productivity, soil organic carbon, and net ecosystem carbon budget. Agric Ecosyst Environ. 2022;340:108175. https://doi.org/10.1016/j.agee.2022.108175
  60. 60. Hollinger SE, Bernacchi CJ, Meyers TP. Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric For Meteorol. 2005;130(1-2):59-69. https://doi.org/10.1016/j.agrformet.2005.01.005
  61. 61. Verma SB, Dobermann A, Cassman KG, Walters DT, Knops JM, Arkebauer TJ, et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric For Meteorol. 2005;131(1-2):77-96. https://doi.org/10.1016/j.agrformet.2005.05.003
  62. 62. Han GX, Zhou GS, Xu ZZ. Seasonal dynamics of soil respiration and preliminary estimation of carbon budget in maize farmland ecosystem. Chin J Eco-Agric. 2009;17(5):874-9. https://doi.org/10.3724/SP.J.1011.2009.00874
  63. 63. Liang Z, Du J, Yu W, Zhuo K, Shao K, Zhang W, et al. Evaluating maize residue cover using machine learning and remote sensing in the meadow soil region of Northeast China. Remote Sens. 2024;16(21):3953. https://doi.org/10.3390/rs16213953
  64. 64. Ye H, Jiang H, Li R. Study on carbon exchange of a maize agroecosystem during growing seasons in Northeast China. J Maize Res Dev. 2022;30(1):77-85.
  65. 65. Guarenghi MM, Garofalo DF, Seabra JE, Moreira MM, Novaes RM, Ramos NP, et al. Land use change net removals associated with sugarcane in Brazil. Land. 2023;12(3):584. https://doi.org/10.3390/land12030584
  66. 66. de Amorim FR, Patino MTO. Costs of soil preparation and sugarcane planting systems: differences between independent suppliers and sugar mills. Rev Estud Debate. 2022;29(4). https://doi.org/10.22410/issn.1983-036X.v29i4a2022.3124
  67. 67. Ming G, Hu H, Tian F, Khan MYA, Zhang Q. Carbon budget for a plastic-film mulched and drip-irrigated cotton field in an oasis of Northwest China. Agric For Meteorol. 2021;306:108447. https://doi.org/10.1016/j.agrformet.2021.108447
  68. 68. Tigre MA. The ‘Fair Share’ of climate mitigation: Can litigation increase national ambition for Brazil? J Hum Rights Pract. 2024;16(1):25-46. https://doi.org/10.1093/jhuman/huad032
  69. 69. Cabral OM, Freitas HC, Cuadra SV, de Andrade CA, Ramos NP, Grutzmacher P, et al. The sustainability of a sugarcane plantation in Brazil assessed by the eddy covariance fluxes of greenhouse gases. Agric For Meteorol. 2020;282:107864. https://doi.org/10.1016/j.agrformet.2019.107864
  70. 70. Tamale J, Van Straaten O, Hüppi R, Turyagyenda LF, Fiener P, Doetterl S. Soil greenhouse gas fluxes following conversion of tropical forests to fertilizer-based sugarcane systems in northwestern Uganda. Agric Ecosyst Environ. 2022;333:107953. https://doi.org/10.1016/j.agee.2022.107953
  71. 71. Patel N, Pokhariyal S, Chauhan P, Dadhwal V. Dynamics of CO₂ fluxes and controlling environmental factors in sugarcane (C4)-wheat (C3) ecosystem of dry sub-humid region in India. Int J Biometeorol. 2021;65:1069-84. https://doi.org/10.1007/s00484-021-02088-y
  72. 72. Agbenyegah BK. Cotton: Outlook to 2016-17. Agric Commod. 2012;2(1):59-64.
  73. 73. Barwale R, Gadwal V, Zehr U, Zehr B. Prospects for Bt cotton technology in India. AgBioForum. 2004;7(1&2): 23-26
  74. 74. Mayee CD, Monga D, Dhillon SS, Nehra PL, Pundhir P. Asia-Pacific Association of Agricultural Research Institutions. Bangkok, Thailand; 2008:48.
  75. 75. Thorp KR, Hunsaker DJ, Bronson KF, Andrade-Sanchez P, Barnes EM. Cotton irrigation scheduling using a crop growth model and FAO-56 methods: Field and simulation studies. Trans ASABE. 2017;60(6):2023-39. https://doi.org/10.13031/trans.12323
  76. 76. Blaise D, Kranthi K. Cotton production in India. In: Cotton production. Hoboken (NJ): Wiley; 2019. p. 193-215. https://doi.org/10.1002/9781119385523.ch10
  77. 77. Ton P, Asterine A, Knappa M. Cotton and climate change—Impacts and options to adapt. EGU Gen Assem. 2012;421.
  78. 78. Wang K, Wang S, Zhu R, Miao L, Peng Y. Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR. Bioresour Technol. 2013;134:212-8. https://doi.org/10.1016/j.biortech.2013.02.017
  79. 79. Prescher A-K, Grünwald T, Bernhofer C. Land use regulates carbon budgets in eastern Germany: From NEE to NBP. Agric For Meteorol. 2010;150(7-8):1016-25. https://doi.org/10.1016/j.agrformet.2010.03.008
  80. 80. Singh P, Benbi DK. Modeling soil organic carbon with DNDC and RothC models in different wheat-based cropping systems in north-western India. Commun Soil Sci Plant Anal. 2020;51(9):1184-203. https://doi.org/10.1080/00103624.2020.1751850
  81. 81. Grant RF, Arkebauer TJ, Dobermann A, Hubbard KG, Schimelfenig TT, Suyker AE, et al. Net biome productivity of irrigated and rainfed maize-soybean rotations: modeling vs. measurements. Agron J. 2007;99(6):1404-23. https://doi.org/10.2134/agronj2006.0308
  82. 82. Pique G, Fieuzal R, Debaeke P, Al Bitar A, Tallec T, Ceschia E. Combining high-resolution remote sensing products with a crop model to estimate carbon and water budget components: application to sunflower. Remote Sens. 2020;12(18):2967. https://doi.org/10.3390/rs12182967
  83. 83. Pique G, Wijmert T, Fieuzal R, Ceschia E. Estimation of crop production, CO₂ fluxes and carbon budget using remote sensing: Application to winter wheat/sunflower rotations. Environ Sci Proc. 2020. https://doi.org/10.3390/ecas2020-08141
  84. 84. Hu M, Qu Z, Li Y, Xiong Y, Huang G. Contrasting effects of different straw return modes on net ecosystem carbon budget and carbon footprint in saline-alkali arid farmland. Soil Tillage Res. 2024;239:106031. https://doi.org/10.1016/j.still.2024.106031
  85. 85. Feng Y, Chen S, Zhang L. System dynamics modeling for urban energy consumption and CO₂ emissions: A case study of Beijing, China. Ecol Model. 2013;252:44-52. https://doi.org/10.1016/j.ecolmodel.2012.09.008
  86. 86. Béziat P, Ceschia E, Dedieu G. Carbon balance of a three crop succession over two cropland sites in South West France. Agric For Meteorol. 2009;149(10):1628-45. https://doi.org/10.1016/j.agrformet.2009.05.004
  87. 87. Duchemin B, Maisongrande P, Boulet G, Benhadj I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ Model Softw. 2008;23(7):876-92. https://doi.org/10.1016/j.envsoft.2007.10.003

Downloads

Download data is not yet available.