Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Survey and morpho-molecular characterization of the bhendi powdery mildew incited by Golovinomyces cichoracearum (DC.) V.P. Heluta

DOI
https://doi.org/10.14719/pst.8959
Submitted
18 April 2025
Published
22-09-2025

Abstract

Abelmoschus esculentus L. (bhendi), commonly referred to as okra, is a significant vegetable crop extensively cultivated in India due to its high nutritional value and economic importance. It serves as an abundant source of vitamins, minerals and dietary fibre, establishing itself as a fundamental component in numerous Indian households. However, it is attacked by numerous biotic and abiotic factors, among which powdery mildew causes severe yield loss. Roving survey undertaken across key bhendi-growing regions of Tamil Nadu exposed that incidence of powdery mildew, expressed as Percent Disease Index (PDI), ranged from 22.37 % to 74.57 %. The top three villages with the PDI were Kannivadi in Dindigul district with 74.57 %, followed by Kollapatti in Dindigul district with 71.85 % and Neikarapatti in Dindigul district with 65.35 %. The village with the least disease incidence was Gengaveli in Attur, Salem district, with 22.37 %. Pathogenicity assays performed with fifteen Golovinomyces sp. isolates led to the manifestation of characteristic powdery mildew symptoms. Morphological studies of all fifteen isolates were performed using a stereo binocular microscope and a scanning electron microscope (SEM). The most virulent isolate, AUGC02, which exhibited the highest disease incidence, was molecularly characterized using ITS universal fungal primers and confirmed as G. cichoracearum (GenBank Accession: PP373832), providing valuable insights for disease management strategies.

References

  1. 1. Bacha AA, Suhail M, Awwad FA, Ismail EAA, Ahmad H. Role of dietary fiber and lifestyle modification in gut health and sleep quality. Front Nutr. 2024;11:1324793. https://doi.org/10.3389/fnut.2024.1324793
  2. 2. Food and Agriculture Organization. Global production statistics for Bhendi. FAO. 2022. https://openknowledge.fao.org/server/api/core/bitstreams/0c372c04-8b29-4093-bba6-8674b1d237c7/content
  3. 3. Indian Council of Agricultural Research. Annual Report 2021-22. New Delhi: ICAR. 2022. https://icar.org.in/en/annual-report
  4. 4. Sridhar TS, Sinha P. Assessment of loss caused by powdery mildew of okra. Indian J Agric Sci. 1989;59(9):606-7.
  5. 5. Chattannavar SN, Swathi B, Shridevi T, Bannur V. Efficacy of different fungicides against Erysiphe cichoracearum in okra. Biol Forum Int J. 2023;15(5):512-6.
  6. 6. Press Information Bureau. Second advance estimates of horticultural crops. Ministry of Agriculture; 2024. https://www.pib.gov.in/PressReleseDetail.aspx?PRID=2022761
  7. 7. Ministry of Agriculture and Farmers Welfare (India). Horticultural statistics at a glance 2023. New Delhi: Government of India, Department of Agriculture and Farmers Welfare, Economics Statistics & Evaluation Division. 2023. https://desagri.gov.in/wp-content/uploads/2024/09/Agricultural-Statistics-at-a-Glance-2023.pdf
  8. 8. Department of Agriculture, Government of Tamil Nadu. Annual Report 2021-22. Tamil Nadu: Department of Agriculture. 2022. https://des.tn.gov.in/sites/default/files/2023-08/TRS%20annual%20Report%202021-22.pdf
  9. 9. Sarhan EAD, Abd-Elsyed MHF, Ebrahiem AMY. Biological control of cucumber powdery mildew (Podosphaera xanthii) (Castagne) under greenhouse conditions. Egypt J Biol Pest Control. 2020;30:65. https://doi.org/10.1186/s41938-020-00267-4
  10. 10. Kusch S, Qian J, Loos A, Kümmel F, Spanu PD, Panstruga R. Long-term and rapid evolution in powdery mildew fungi. Mol Ecol. 2024;33(10):e16909. https://doi.org/10.1111/mec.16909
  11. 11. Ashwini R, Amaresh YS, Yenjerappa ST, Kulkarni S, Aswathanarayana DS. Studies on symptomatology, morphological and molecular characterization of Erysiphe cichoracearum causing powdery mildew of okra. Int J Environ Clim Change. 2023;13(10):2921-8. https://doi.org/10.9734/ijecc/2023/v13i102958
  12. 12. Kallamadi PR, Mulpuri S. Inheritance and molecular mapping of powdery mildew (Golovinomyces orontii) resistance gene(s) in sunflower (Helianthus annuus L.). 3 Biotech. 2020;10:234. https://doi.org/10.1007/s13205-020-02224-2
  13. 13. Rajeshwaran D, Narayana M, Palaniappan V, Ramasamy S, Lingan R, Muniyandi S. Detection and validation of novel QTL associated with powdery mildew (Golovinomyces cichoracearum (DC.) V. P. Heluta.) resistance in sunflower (Helianthus annuus L.). Euphytica. 2022;218:143. https://doi.org/10.1007/s10681-022-03098-6
  14. 14. Braun U, Cook RTA. Taxonomic manual of the Erysiphales (powdery mildews). CBS-Biodiversity Series 11. Utrecht: CBS-KNAW Fungal Biodiversity centre. 2012.
  15. 15. McKinney HH. Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J Agric Res. 1923;26(5):195–217.
  16. 16. Jamadar M, Desai SA. Bioefficacy of dimethomorph against downy mildew of grapevine. Adv Agric Res India. 1997;4:81-5.
  17. 17. Vimala R. Molecular and biochemical markers for characterization of Erysiphe pisi resistance in pea (Pisum sativum L.). PhD Thesis, Indian Agricultural Research Institute, New Delhi; 2005.
  18. 18. Rajalakshmi J, Parthasarathy S, Narayanan P, Prakasam V. Survey of the incidence and severity of bhendi (Abelmoschus esculentus (L.) Moench) and peas (Pisum sativum L.) powdery mildew diseases in Tamil Nadu, India. Adv Life Sci. 2016;5(3):808-14.
  19. 19. De Souza AF, Cafe-Filho AC. Resistance to Leveillula taurica in the genus Capsicum. Plant Pathol. 2003;52(5):613-9. https://doi.org/10.1046/j.1365-3059.2003.00920.x
  20. 20. White TJ, Bruns T, Lee SJW, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. Academic Press; 1990. p. 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  21. 21. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7. https://doi.org/10.1093/molbev/msab120
  22. 22. Gomez KA, Gomez AA. Statistical procedures for agricultural research. 2nd ed. New York: John Wiley & Sons; 1984.
  23. 23. Bendek C, Campbell P, Torres R, Donoso A, Latorre B. The risk assessment index in grape powdery mildew control decisions and the effect of temperature and humidity on conidial germination of Erysiphe necator. Span J Agric Res. 2007;5(4):522-32. https://doi.org/10.5424/sjar/2007054-273
  24. 24. Gupta SK, Gupta A, Shyam KR, Bhardwaj R. Morphological characterization and effect of meteorological factors on development of cucumber powdery mildew. Indian Phytopathol. 2001;54(3):311-5.
  25. 25. Elad Y, Messika Y, Brand M, David DR, Sztejnberg A. Effect of microclimate on Leveillula taurica powdery mildew of sweet pepper. Phytopathology. 2007;97(7):813-24. https://doi.org/10.1094/PHYTO-97-7-0813
  26. 26. Kanipriya R, Rajendran L, Raguchander T, Karthikeyan G. Characterization of Ampelomyces and its potentiality as an effective biocontrol agent against Erysiphe cichoracearum DC causing powdery mildew disease in bhendi (Abelmoschus esculentus (L.) Moench). Madras Agric J. 2019;106(Suppl):267-78. https://doi.org/10.29321/MAJ.2019.000258
  27. 27. Agrios GN. Plant Pathology. New York: Academic Press. 1997. p. 635.
  28. 28. Singh RS. Diseases of vegetable crops. New Delhi: Oxford and IBH. 1985. p. 346.
  29. 29. Priyanka S, Rajendran L, Anandham R, Raguchander T. Characterization of cucurbit powdery mildews by morphological and microscopic studies. Int J Curr Microbiol App Sci. 2020;9(7):472-81. https://doi.org/10.20546/ijcmas.2020.907.052
  30. 30. Hassan MSS, Monir GA, Shoala T. Biological and chemical control of powdery mildew (Sphaerotheca pannosa (Wallr.) var. persicae) in apricot. Int J Sci Res Sustain Dev. 2019;2(1):1-19. https://doi.org/10.21608/ijsrsd.2019.190423
  31. 31. Praveen Y. Investigations on powdery mildew of greengram caused by Erysiphe polygoni DC. [MSc thesis]. Raichur: Univ Agric Sci. 2013.
  32. 32. Leão EU, Rocha KCG, Silva N, Pavan MA, Adorian GC, Krause-Sakate R. Morphological and molecular characterization of powdery mildew on watermelon plants in São Paulo state. Comun Sci. 2019;10(4):505-8. https://doi.org/10.14295/cs.v10i4.2315
  33. 33. Esawy AA, Elsharkawy MM, Omara RI, Khalifa MAF, Fadel FM, El-Naggar MM. Biological control of Golovinomyces cichoracearum, the causal pathogen of sunflower powdery mildew. Egypt J Biol Pest Control. 2021;31:133. https://doi.org/10.1186/s41938-021-00479-2

Downloads

Download data is not yet available.