Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Physicochemical and antioxidant characterization of quinoa (Chenopodium quinoa Willd) seeds cultivated in Béni Mellal, Morocco

DOI
https://doi.org/10.14719/pst.8977
Submitted
20 April 2025
Published
25-08-2025 — Updated on 16-09-2025
Versions

Abstract

Quinoa (Chenopodium quinoa Willd) is a highly nutritious pseudo cereal originating from the Andes, notable for its resilience in diverse soil types and climatic conditions. It contains high levels of protein, fats, dietary fiber, micronutrients and essential amino acids. Despite limited consumption due to high import costs and low public awareness, quinoa is increasingly drawing interest from researchers and consumers alike. Morocco faces growing water scarcity, exacerbated by global climate change, irregular rainfall and successive years of drought. These challenges are particularly acute in arid and semi-arid regions such as Béni Mellal, where high temperatures and limited water availability place increasing pressure on agricultural systems. In this context, quinoa stands out as a resilient crop due to its ability to tolerate heat and thrive under water-limited conditions, making it a strong candidate for climate resilient agriculture. This study aims to assess the physicochemical, biochemical and morphological characteristics of quinoa grown for the first time in Morocco’s Béni Mellal region, to evaluate its suitability and agronomic potential under local environmental conditions. A comparison was made between quinoa seeds cultivated in the Béni Mellal region and those grown in another region of Morocco (Settat). A morphological and nutritional analysis was conducted, focusing on weight, thickness, diameter, coloration, dry matter, ash, fat, protein, fiber and sugar content. The seeds were analyzed for their content of phenolic compounds, including flavonoid derivatives and condensed tannins. Their antioxidant potential was also assessed through multiple evaluation methods. The analysis revealed that the quinoa seeds cultivated in the Béni Mellal region exhibited notably elevated levels (p ≤ 0.05) of phenolic content, reaching 1512.16 (mg GAE/100 g DW). These seeds also demonstrated a strong antioxidant potential, with a total antioxidant capacity (TAC) value of 467.52. In addition, they contained higher proportions of protein (19.13 %) and dietary fiber (12.55 %) compared to typical reference values. These results highlight quinoa’s potential not only to thrive under agro-climatic stress but also to contribute to nutritional security and drought-adaptive farming systems. Incorporating quinoa into Moroccan agriculture could enhance crop diversification, reduce vulnerability to climate extremes and support sustainable development in arid and semi-arid regions.

References

  1. 1. Tan M, Chang S, Liu J, Li H, Xu P, Wang P, et al. Physicochemical properties, antioxidant and antidiabetic activities of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Molecules. 2020;25(17):3840. https://doi.org/10.3390/molecules25173840
  2. 2. Haros CM, Reguera M, Sammán N, Paredes-López O. The outlook for Latin-American crops. In: Agronomic, processing and health aspects. CRC Press; 2023. p. 91‑118.
  3. 3. Nowak V, Du J, Charrondière UR. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016;193:47‑54. http://doi.org/10.1016/j.foodchem.2015.02.111
  4. 4. Ando H, Chen YC, Tang H, Shimizu M, Watanabe K, Mitsunaga T. Food components in fractions of quinoa seed. FSTR. 2002;8(1):80-4.
  5. 5. Abugoch James LE. Chenopodium quinoa Willd. In: Advances in food and nutrition research. Chapter 1. Elsevier; 2009. p. 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1
  6. 6. Jacobsen SE. The worldwide potential for Chenopodium quinoa Willd. Food Rev Int. 2003;19(1 2):167-77. https://doi.org/10.1081/FRI-120018883
  7. 7. Repo-Carrasco R, Espinoza C, Jacobsen SE. Nutritional value and use of the Andean crops Chenopodium quinoa and Chenopodium pallidicaule. Food Rev Int. 2003;19(1 2):179-89. https://doi.org/10.1081/FRI-120018884
  8. 8. Abd El-Hakim A, Mady E, Abou Tahoun AM, Ghaly SA, Eissa MA. Seed quality and protein classification of some quinoa varieties. J Ecol Eng. 2022;23(1):24-33. https://doi.org/10.12911/22998993/143866
  9. 9. Alkobeisi F, Varidi MJ, Varidi M, Nooshkam M. Quinoa flour as a skim milk powder replacer in concentrated yogurts: effect on their physicochemical, technological, and sensory properties. Food Sci Nutr. 2022;10(4):1113-25. https://doi.org/10.1002/fsn3.2771
  10. 10. Balakrishnan G, Schneider RG. The role of amaranth, quinoa, and millets for the development of healthy, sustainable food products—a concise review. Foods. 2022;11(16):2442. https://doi.org/10.3390/foods11162442
  11. 11. Miranda‐Villa PP, Mufari JR, Bergesse AE, Calandri EL. Effects of whole and malted quinoa flour addition on gluten‐free muffins quality. J Food Sci. 2019;84(1):147-53. https://doi.org/10.1111/1750-3841.14413
  12. 12. Rafik S, Rahmani M, Choukr-Allah R, El Gharous M, Rodriguez JP, Filali K, et al. Techno-economic assessment of quinoa production and transformation in Morocco. Environ Sci Pollut Res. 2021;28(9). https://doi.org/10.1007/s11356-021-12665-8
  13. 13. Antognoni F, Potente G, Biondi S, Mandrioli R, Marincich L, Ruiz KB. Free and conjugated phenolic profiles and antioxidant activity in quinoa seeds and their relationship with genotype and environment. Plants. 2021;10(6):1046. https://doi.org/10.3390/plants10061046
  14. 14. Marmouzi I, El Madani N, Charrouf Z, Cherrah Y, El Abbes Faouzi MY. Proximate analysis, fatty acids and mineral composition of processed Moroccan Chenopodium quinoa Willd. and antioxidant properties according to the polarity. Phytothérapie. 2015;13(2):110-7. https://doi.org/10.1007/s10298-015-0931-5
  15. 15. Rizki H, Kzaiber F, Elharfi M, Latrache H, Zahir H, Hanine H. Physicochemical characterization and in vitro antioxidant capacity of 35 cultivars of sesame (Sesamum indicum L.) from different areas in Morocco. Int J Sci Res. 2014;3:2306-11. https://doi.org/10.21275/OCT141504
  16. 16. Tikent A, Laaraj S, Marhri A, Taibi M, Elbouzidi A, Khalid I, et al. The antioxidant and antimicrobial activities of two sun-dried fig varieties (Ficus carica L.) produced in Eastern Morocco and the investigation of pomological, colorimetric, and phytochemical characteristics for improved valorization. Int J Plant Biol. 2023;14(3):845-63. https://doi.org/10.3390/ijpb14030063
  17. 17. Horwitz W. Official methods of analysis. Vol. 222. Association of Official Analytical Chemists. Washington, DC; 1975.
  18. 18. Bryant CM, McClements DJ. Influence of sucrose on NaCl-induced gelation of heat denatured whey protein solutions. Food Res Int. 2000;33(8):649-53. https://doi.org/10.1016/S0963-9969(00)00109-5
  19. 19. Bradstreet RB. Kjeldahl method for organic nitrogen. ACS Publications. American Chemical Society; 2002.
  20. 20. López-Bascón MA, Luque De Castro MD. Soxhlet extraction. In: Liquid-phase extraction. Elsevier; 2020. p. 327-54. https://doi.org/10.1016/B978-0-12-816911-7.00011-6
  21. 21. Chafki L, Elfazazi K, Azzouzi H, Achoub M, Fakhour S, Benbati M, et al. Physicochemical criteria, bioactive compounds of pomegranate peels (Punica granatum L. Sefri variety) cultivated in Beni Mellal, Morocco. Plant Cell Biotechnol Mol Biol. 2021;22:315-22.
  22. 22. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-6. https://doi.org/10.1021/ac60111a017
  23. 23. Green F, Clausen CA, Highley TL. Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal Biochem. 1989;182(2):197-9. https://doi.org/10.1016/0003-2697(89)90578-2
  24. 24. Zhang Y, Bai B, Yan Y, Liang J, Guan X. Bound polyphenols from red quinoa prevailed over free polyphenols in reducing postprandial blood glucose rises by inhibiting α-glucosidase activity and starch digestion. Nutrients. 2022;14(4):728. https://doi.org/10.3390/nu14040728
  25. 25. Kumaran A, Joel Karunakaran R. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT - Food Sci Technol. 2007;40(2):344-52. https://doi.org/10.1016/j.lwt.2005.09.011
  26. 26. Ba K, Tine E, Destain J, Cissé N, Thonart P. Comparative study of phenolic compounds, antioxidant power of various Senegalese sorghum cultivars and amylolytic enzymes of their malt. Biotechnol Agron Soc Environ. 2010;14(1):131-9.
  27. 27. Kandsi F, Elbouzidi A, Lafdil FZ, Meskali N, Azghar A, Addi M, et al. Antibacterial and antioxidant activity of Dysphania ambrosioides (L.) Mosyakin and Clemants essential oils: experimental and computational approaches. Antibiotics. 2022;11(4):482. https://doi.org/10.3390/antibiotics11040482
  28. 28. Rădulescu M, Jianu C, Lukinich-Gruia AT, Mioc M, Mioc A, Șoica C, et al. Chemical composition, in vitro and in silico antioxidant potential of Melissa officinalis subsp. officinalis essential oil. Antioxidants. 2021;10(7):1081. https://doi.org/10.3390/antiox10071081
  29. 29. Elbouzidi A, Taibi M, Laaraj S, Loukili EH, Haddou M, El Hachlafi N, et al. Chemical profiling of volatile compounds of the essential oil of grey-leaved rockrose (Cistus albidus L.) and its antioxidant, anti-inflammatory, antibacterial, antifungal, and anticancer activity in vitro and in silico. Front Chem. 2024;12:1334028. https://doi.org/10.3389/fchem.2024.1334028
  30. 30. Nakyai W, Pabuprapap W, Sroimee W, Ajavakom V, Yingyongnarongkul BE, Suksamrarn A. Anti-acne vulgaris potential of the ethanolic extract of Mesua ferrea L. flowers. Cosmetics. 2021;8(4):1-12. https://doi.org/10.3390/cosmetics8040107
  31. 31. Chaudhary S, Chandrashekar KS, Pai KSR, Setty MM, Devkar RA, Reddy ND, et al. Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complement Altern Med. 2015;15(1):1-13. https://doi.org/10.1186/s12906-015-0563-1
  32. 32. Chaudhary M, Singh R, Chauhan ES, Panwar B. Evaluating proximate, antinutrient, and antioxidant activity of raw and processed quinoa (Chenopodium quinoa Willd.) flour and developing food products by incorporating them. J Nutr Food Secur. 2024;9(3):529-38.
  33. 33. Matías J, Rodríguez MJ, Cruz V, Calvo P, Granado-Rodríguez S, Poza-Viejo L, et al. Assessment of the changes in seed yield and nutritional quality of quinoa grown under rainfed Mediterranean environments. Front Plant Sci. 2023;14:1268014. https://doi.org/10.3389/fpls.2023.1268014
  34. 34. Li H, Wang Q, Huang T, Liu J, Zhang P, Li L, et al. Transcriptome and metabolome analyses reveal mechanisms underlying the response of quinoa seedlings to nitrogen fertilizers. Int J Mol Sci. 2023;24(14):11580. https://doi.org/10.3390/ijms241411580
  35. 35. Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM. Quinoa abiotic stress responses: a review. Plants. 2018;7(4):106. https://doi.org/10.3390/plants7040106
  36. 36. Rodrigues DB, Cavalcante JA, Almeida AS, Nunes CA, Serrão AFA, Konzen LH, et al. Seed morphobiometry, morphology of germination and emergence of quinoa seeds ‘BRS Piabiru’. An Acad Bras Ciênc. 2020;92:e20181313. https://doi.org/10.1590/0001-3765202020181313
  37. 37. Pathan S, Siddiqui RA. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: a review. Nutrients. 2022;14:558. https://doi.org/10.3390/foods10020351
  38. 38. Meneguetti QA, Brenzan MA, Batista MR, Bazotte RB, Silva DR, Garcia Cortez DA. Biological effects of hydrolyzed quinoa extract from seeds of Chenopodium quinoa Willd. J Med Food. 2011;14(6):653-7. https://doi.org/10.1089/jmf.2010.0096
  39. 39. Saturni L, Ferretti G, Bacchetti T. The gluten-free diet: safety and nutritional quality. Nutrients. 2010;2(1):16-34. https://doi.org/10.3390/nu2010016
  40. 40. Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric. 2010;90(15):2541-7. https://doi.org/10.1002/jsfa.4158
  41. 41. Sekhavatizadeh SS, Hosseinzadeh S, Mohebbi G. Nutritional, antioxidant properties and polyphenol content of quinoa (Chenopodium quinoa Willd.) cultivated in Iran. Future Food J Food Agric Soc. 2021;9(2). http://doi.org/10.17170/kobra-202102163256
  42. 42. Gordillo-Bastidas E, Rizzolo DD. Quinoa (Chenopodium quinoa Willd.), from nutritional value to potential health benefits: an integrative review. J Nutr Food Sci. 2016;6(3). https://doi.org/10.4172/2155-9600.1000497
  43. 43. Alvarez-Jubete L, Arendt EK, Gallagher E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr. 2009;60:240-57. https://doi.org/10.1080/09637480902950597
  44. 44. Paśko P, Bartoń H, Zagrodzki P, Gorinstein S, Fołta M, Zachwieja Z. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009;115(3):994-8. https://doi.org/10.1016/j.foodchem.2009.01.037
  45. 45. Melini V, Melini F. Functional components and anti-nutritional factors in gluten-free grains: a focus on quinoa seeds. Foods. 2021;10(2):351. https://doi.org/10.3390/foods10020351
  46. 46. Touil L, Rami R, Aydi SS, Amara DG, Messaoudi M, Sawicka B, et al. Nutritional potential, phytochemical analysis, and biological activities of quinoa (Chenopodium quinoa Willd.) seeds from arid zone culture. Ital J Food Sci. 2024;36(3):164-75. https://doi.org/10.15586/ijfs.v36i3.2583

Downloads

Download data is not yet available.