Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Recent advances in mutagenesis for commercial fruit crop improvement: A comprehensive review

DOI
https://doi.org/10.14719/pst.8984
Submitted
20 April 2025
Published
25-08-2025 — Updated on 16-09-2025
Versions

Abstract

Mutagenesis, the deliberate induction of genetic alterations, plays a critical role in modern fruit crop improvement. This review explores the impact of mutagenesis methods discussed on diverse fruit crops, highlighting advancements in traits. Such as developing dwarf fruit mutant lines with enhanced resistance to biotic and abiotic stressors, seedlessness, yield and fruit quality have been a major focus recently. Traditional breeding techniques have often led to a genetic bottleneck, limiting. diversity available for crop improvement. To overcome these limitations, plant breeders have adopted innovative approaches like genome editing and mutation. The mutagenesis experiments aim for a 30-80 % survival rate of treated seeds or explants. This balance ensures a high enough mutation load without excessive lethality, which would reduce the population size for selection. In vitro random mutagenesis relies on the application of physical and chemical mutagens to increase the frequency of mutations thus accelerating the selection of varieties with important agronomic traits. Mutation breeding consists of three main elements to develop a new trait: mutation induction, selection of desirable mutants through phenotypic screening and genetic characterization using molecular markers. Mutation breeding involves three key steps: mutation induction, phenotypic selection and genetic characterization them using molecular markers (e.g., DNA markers, SNPs) to understand the genetic basis of the observed traits. The physical mutagens are successful; breeders are inclined breeders are given increasingly inclined to use novel genome editing tools like CRISPR/Cas9 gene editing technology to modify plants. The limitations of random mutagenesis, breeders are increasingly adopting novel genome editing technologies. Tools like Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), RNA interference (RNAi) and especially CRISPR/Cas systems offer several advantages. CRISPR/Cas9 offers precise genome editing capabilities. It enables targeted modifications that enhance desirable traits and address critical challenges in fruit production. This review provides mutagenesis techniques and their applications, emphasizing their importance in developing improved and sustainable fruit cultivars to meet the demands of a growing global population.

References

  1. 1. Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen M, et al. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci. 2020;21(7):2590. https://doi.org/10.3390/ijms21072590
  2. 2. World Health Organization. The State of Food Security and Nutrition in the World 2023: Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome: Food & Agriculture Organization; 2023.
  3. 3. Dey R, Kundu S, Khan MS. Factors associated with inadequate fruit and vegetable consumption among adults in Bangladesh: evidence from a nationally representative cross‐sectional survey. Lifestyle Med. 2025;6(2):e70015. https://doi.org/10.1002/lim2.70015
  4. 4. Arús P, Bassi D, Bonany J, Corelli L, Durel C, Laurens F, et al., editors. Review of fruit genetics and breeding programmes and a new European initiative to increase fruit breeding efficiency. In: XXVIII Int Hortic Congr Sci Hortic People (IHC2010). Int Symp. 2010;929. https://doi.org/10.17660/ActaHortic.2012.929.12
  5. 5. Wani MA, Magray AF. Breeding approaches for improvement of temperate fruit crops and nuts: a review. Braz J Dev. 2024;10(1):2327-50. https://doi.org/10.34117/bjdv10n1-143
  6. 6. Ulukapi K, Nasircilar AG, editors. Developments of gamma ray application on mutation breeding studies in recent years. In: International Conference on Advances in Agricultural, Biological & Environmental Sciences (AABES-2015) July 22-23, 2015, London, UK. http://doi.org/10.15242/IICBE.C0715044
  7. 7. Afiya R, Kumar SS, Manivannan S. Recent trends with mutation breeding in fruit crop improvement. Plant Cell Biotechnol Mol Biol. 2021;22:393-403.
  8. 8. Surakshitha N, Soorianathasundaram K. Determination of mutagenic sensitivity of hardwood cuttings of grapes 'Red Globe' and 'Muscat' (Vitis vinifera L.) to gamma rays. Sci Hortic. 2017;226:152-6. https://doi.org/10.1016/j.scienta.2017.08.040
  9. 9. Tetali S, Karkamkar S, Phalake S. Mutation breeding for inducing seedlessness in grape variety ARI 516. Int. J. Minor Fruits Med. Aromat. Plants. 2020;6(2):67-71.
  10. 10. Kumar G, Pandey A. Ethyl methane sulphonate induced changes in cyto-morphological and biochemical aspects of Coriandrum sativum L. J Saudi Soc Agric Sci. 2019;18(4):469-75. https://doi.org/10.1016/j.jssas.2018.03.003
  11. 11. Karsinah K, Indriyani N, Sukartini S. The effect of gamma irradiation on the growth of mango grafted material. J Agric Biol Sci. 2012;7(10):840-4.
  12. 12. Kumar MK, Dinesh M, Srivastav M, Singh S, Singh A. Mutagenic sensitivity of scions and seed kernels of polyembryonic mango cultivars Peach and Bappakai to gamma irradiation. Int J Chem Stud. 2018;6(3):3335-9.
  13. 13. Rime J, Dinesh M, Sankaran M, Shivashankara K, Rekha A, Ravishankar K. Evaluation and characterization of EMS derived mutant populations in mango. Sci Hortic. 2019;254:55-60. https://doi.org/10.1016/j.scienta.2019.04.015
  14. 14. Lamo K, Bhat DJ, Kour K, Solanki SPS. Mutation studies in fruit crops: a review. Int J Curr Microbiol Appl Sci. 2017;6(12):3620-33. https://doi.org/10.20546/ijcmas.2017.612.418
  15. 15. Ahloowalia B. In-vitro techniques and mutagenesis for the improvement of vegetatively propagated plants. In: Somaclonal variation and induced mutations in crop improvement. Springer; 1998. p. 293-309. https://doi.org/10.1007/978-94-015-9125-6_15
  16. 16. Britt AB. DNA damage and repair in plants. Annu Rev Plant Biol. 1996;47(1):75-100. https://doi.org/10.1146/annurev.arplant.47.1.75
  17. 17. Predieri S, Gatti E. Effects of gamma radiation on plum (Prunus salicina Lindl.) 'Shiro'. Adv Hortic Sci. 2000;14:215-23.
  18. 18. Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58(4):575-85. https://doi.org/10.1016/j.molcel.2015.04.028
  19. 19. Xu X, Qi LS. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol. 2019;431(1):34-47. https://doi.org/10.1016/j.jmb.2018.06.037
  20. 20. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361(6408):1259-62. https://doi.org/10.1126/science.aas9129
  21. 21. Ge Z, Zheng L, Zhao Y, Jiang J, Zhang EJ, Liu T, et al. Engineered xCas9 and SpCas9‐NG variants broaden PAM recognition sites to generate mutations in Arabidopsis plants. Plant Biotechnol J. 2019;17(10):1865. https://doi.org/10.1111/pbi.13148
  22. 22. Hua K, Tao X, Han P, Wang R, Zhu J-K. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol Plant. 2019;12(7):1003–14. https://doi.org/10.1016/j.molp.2019.03.009
  23. 23. Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC. CRISPR/dCas9-based systems: mechanisms and applications in plant sciences. Plants. 2021;10(10):2055. https://doi.org/10.3390/plants10102055
  24. 24. Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 2019;70(1):667–97. https://doi.org/10.1146/annurev-arplant-050718-100049
  25. 25. Godwin ID, Rutkoski J, Varshney RK, Hickey LT. Technological perspectives for plant breeding. Theor Appl Genet. 2019;132(3):555–7. https://doi.org/10.1007/s00122-019-03321-4
  26. 26. Shivashankara K, Venugopalan R. Characterization and evaluation of putative mutant populations of polyembryonic mango genotype Nekkare for dwarfing rootstock traits. J Hortic Sci. 2022;17(2):261-71. https://doi.org/10.24154/jhs.v17i2.1456
  27. 27. Kamatyanatt M, Singh SK, Sekhon BS. Mutation breeding in citrus—A review. Plant Cell Biotechnol Mol Biol. 2021;22:1–8.
  28. 28. Maluszynski M, Ahloowalia BS, Sigurbjörnsson B. Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica. 1995;85:303–15. https://doi.org/10.1007/BF00023960
  29. 29. Mba C, Afza R, Bado S, Jain SM. Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P, editors. Plant cell culture: essential methods. Vol. 20. Wiley; 2010. p. 111–30. https://doi.org/10.1002/9780470686522.ch7
  30. 30. Prudencio AS, Devin SR, Mahdavi SME, Martínez-García PJ, Salazar JA, Martínez-Gómez P. Spontaneous, artificial, and genome editing-mediated mutations in Prunus. Int J Mol Sci. 2022;23(21):13273. https://doi.org/10.3390/ijms232113273
  31. 31. Walker AR, Lee E, Robinson SP. Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Mol Biol. 2006;62:623–35. https://doi.org/10.1007/s11103-006-9043-9
  32. 32. Malladi A, Hirst PM. Increase in fruit size of a spontaneous mutant of ‘Gala’ apple (Malus× domestica Borkh.) is facilitated by altered cell production and enhanced cell size. J Exp Bot. 2010;61(11):3003–13. https://doi.org/10.1093/jxb/erq134
  33. 33. Ban S, Jung JH. Somatic mutations in fruit trees: causes, detection methods, and molecular mechanisms. Plants. 2023;12(6):1316. https://doi.org/10.3390/plants12061316
  34. 34. De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ. 2014;37(1):1–18. https://doi.org/10.1111/pce.12142
  35. 35. Atay NA, Atay E, Kunter B, Kantoglu YK, Kaplan N. Determination of optimal mutagen dosage and its effects on morpho-agronomic traits in putative mutants of ‘Amasya’ apple. Genetika. 2019;51(2):629–39. https://doi.org/10.2298/GENSR1902629A
  36. 36. Kaya A. İyonize radyasyonun biyolojik etkileri. Dicle Tıp Derg. 2002;29(3):65–75.
  37. 37. Blanco C. Mutagenesis en la mejora genética vegetal. Curso Notas de Especializacion Postuniversitaria del Programa Master en Mejora Genética Vegetal; 2005.
  38. 38. Chan YK, Lee HK, Rusna I. Irradiation-induced variations in M2 populations of Eksotika papaya. J Trop Agric Food Sci. 2007;35(1):49.
  39. 39. Zafar SA, Aslam M, Albaqami M, Ashraf A, Hassan A, Iqbal J, et al. Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi J Biol Sci. 2022;29(5):3300–7. https://doi.org/10.1016/j.sjbs.2022.02.008
  40. 40. Gill SS, Anjum NA, Gill R, Jha M, Tuteja N. DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J. 2015;2015(1):250158. https://doi.org/10.1155/2015/250158
  41. 41. Kam WW-Y, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 2013;65:607–19. https://doi.org/10.1016/j.freeradbiomed.2013.07.024
  42. 42. Nakano T, Xu X, Salem AM, Shoulkamy MI, Ide H. Radiation-induced DNA–protein cross-links: mechanisms and biological significance. Free Radic Biol Med. 2017;107:136–45. https://doi.org/10.1016/j.freeradbiomed.2016.11.041
  43. 43. Manova V, Gruszka D. DNA damage and repair in plants–from models to crops. Front Plant Sci. 2015;6:885. https://doi.org/10.3389/fpls.2015.00885
  44. 44. Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020;18:207–19. https://doi.org/10.1016/j.csbj.2019.12.013
  45. 45. Saha GB. Physics and radiobiology of nuclear medicine. New York: Springer Science & Business Media; 2012. p. 263-99. https://doi.org/10.1007/978-1-4614-4012-3_15
  46. 46. Ali H, Ghori Z, Sheikh S, Gul A. Effects of gamma radiation on crop production. In: Crop production and global environmental issues. Cham: Springer; 2015. p. 27–78. https://doi.org/10.1007/978-3-319-23162-4_2
  47. 47. Wang P, Zhang Y, Zhao L, Mo B, Luo T. Effect of gamma rays on Sophora davidii and detection of DNA polymorphism through ISSR marker. Biomed Res Int. 2017;2017:8576404. https://doi.org/10.1155/2017/8576404
  48. 48. Yasmeen S, Khan MT, Khan IA. Revisiting the physical mutagenesis for sugarcane improvement: a stomatal prospective. Sci Rep. 2020;10(1):16003. https://doi.org/10.1038/s41598-020-73087-z
  49. 49. Mba C, Afza R, Shu Q. Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Plant mutation breeding and biotechnology. Wallingford: CABI; 2012. p. 83–90. https://doi.org/10.1079/9781780640853.0083
  50. 50. Fagherazzi AF, Suek Zanin D, Soares dos Santos MF, Martins de Lima J, Welter PD, Francis Richter A, et al. Initial crown diameter influences on the fruit yield and quality of strawberry ‘Pircinque’. Agronomy. 2021;11(1):184. https://doi.org/10.3390/agronomy11010184
  51. 51. Khater HM, Abd Elaziz Y, Khafaga A, Abdel-Razik A, Ibrahim S, Metwally K. Morphological and molecular characterization of physical and chemical mutations on Durado plum cultivar. Hortic Res J. 2023;1(2):148-160. https://doi.org/10.21608/hrj.2023.307659
  52. 52. Manzoor A, Ahmad T, Bashir MA, Hafiz IA, Silvestri C. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants. 2019;8(7):194. https://doi.org/10.3390/plants8070194
  53. 53. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater. 2012;24(38):5166–80. https://doi.org/10.1002/adma.201202146.
  54. 54. Elfianis R, Mursanto F, Janna A, Erawati T, Yani L, Solin N, editors. Mutation induction in the pineapple (Ananas comosus L. Merr) using colchicine. IOP Conf Ser Earth Environ Sci. 2021. https://doi.org/10.1088/1755-1315/905/1/012082
  55. 55. Predieri S. Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult. 2001;64(2):185–210. https://doi.org/10.1023/A:1010623203554
  56. 56. JJoya-Dávila JG, Gutiérrez-Miceli F. Ethyl methanesulfonate as inductor of somaclonal variants in different crops. Phyton-Int J Exp Bot. 2020;89(4):835-50. https://doi.org/10.32604/phyton.2020.013679
  57. 57. Suprasanna P, Mirajkar S, Patade V, Jain SM. Induced mutagenesis for improving plant abiotic stress tolerance. In: Mutagenesis: exploring genetic diversity of crops. Wageningen: Wageningen Academic; 2014. p. 345–74. https://doi.org/10.3920/9789086867967_019
  58. 58. Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJ, Till BJ, et al. Plant mutation breeding: current progress and future assessment. In: Plant breeding reviews. Vol. 39. Hoboken: Wiley; 2015. p. 23–88. https://doi.org/10.1002/9781119107743.ch2
  59. 59. Sebastian K, Bindu B, Arya M. Recent advances and achievements in mutation breeding of fruit crops: A review. Agric Rev. 2025;46(2):220. https://doi.org/10.18805/ag.R-2616
  60. 60. Datta S, Jankowicz‐Cieslak J, Nielen S, Ingelbrecht I, Till BJ. Induction and recovery of copy number variation in banana through gamma irradiation and low‐coverage whole‐genome sequencing. Plant Biotechnol J. 2018;16(9):1644–53. https://doi.org/10.1111/pbi.12901
  61. 61. Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, et al. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One. 2017;12(5):e0177966. https://doi.org/10.1371/journal.pone.0177966
  62. 62. Grasselly C. Observations on using a late-flowering almond mutant in a hybridization programme. INRA.1978;28(6):685-95.
  63. 63. Daniells J, Davis B, Peterson R, Pegg K. Goldfinger: not as resistant to Sigatoka/yellow Sigatoka as first thought; 1995.
  64. 64. Moore JN, Janick J. Advances in fruit breeding. West Lafayette: Purdue University Press; 1975. p. 623
  65. 65. Yoo JJ, Seo G, Chua MR, Park TG, Lu Y, Rotermund F, et al. Efficient perovskite solar cells via improved carrier management. Nature. 2021;590(7847):587–93. https://doi.org/10.1038/s41586-021-03285-w
  66. 66. Medina J. 'Rosica' – A new mango variety selected in Ica, Peru. Fruit Var J. 1977;31(4):88-9.
  67. 67. Zhao C. Breeding of new early pomegranate cultivar "Taihanghong". China Fruits. 2007;3:5-6.
  68. 68. Liwu Z, Shuiming Z, Xuemei G, Bing J, Shaowen L, Yao L. A new soft-seeded pomegranate variety ‘Hongyushizi’. Acta Hortic Sin. 2005;32(5):965.
  69. 69. Atay AN, Atay E, Özongun Ş, Kunter B, Kantoğlu KY. Alternate bearing tendency in gamma-ray induced mutants of ‘Amasya’ apple. Erwerbs-Obstbau. 2023;65(2):195–200. https://doi.org/10.1007/s10341-022-00804-5
  70. 70. Atay AN, Atay E, Kunter B. Autumn leaf colour changes in gamma-ray (Cobalt 60)-induced mutant apple population. Derim. 2020;37(1):95-101. https://doi.org/10.16882/derim.2020.663488
  71. 71. Sasaki N, Watanabe A, Asakawa T, Sasaki M, Hoshi N, Naito Z, et al. Biological effects of ion beam irradiation on perennial gentian and apple. Plant Biotechnol. 2018;35(3):249–57. https://doi.org/10.5511/plantbiotechnology.18.0612a
  72. 72. El-Mageid IS, Al-Kfrawey A. Effect of different doses of gamma radiation on avocado buds for produce of new genotypes. Mid East J Agric Res. 2018;7(3):977–85.
  73. 73. Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM. Induced genetic variations in fruit trees using new breeding tools: Food security and climate resilience. Plants. 2021;10(7):1347. https://doi.org/10.3390/plants10071347
  74. 74. Udaya CS, Soorianathasundaram K, Ganga M, Paramaguru P, Sivakumar U. Ascertaining gamma ray dosage sensitivity of in vitro cultures in banana cv. Ney Poovan (Musa AB). Electron J Plant Breed. 2021;12(3):685–92. https://doi.org/10.37992/2021.1203.096
  75. 75. Hasim A, Shamsiah A, Hussein S, editors. Induced mutations using gamma ray and multiplication of plantlet through micro cross section culture of banana (Musa acuminata cv. Berangan). IOP Conf Ser Earth Environ Sci. 2021. https://doi.org/10.1088/1755-1315/757/1/012007
  76. 76. Muhaimin A, Aziz MA, Camellia N, Hakiman M. In vitro mutagenesis using bio-beam irradiation on in vitro culture of Cavendish banana cultivar (Musa acuminata Colla) explants. Res Crops. 2020;21(1):99–105. https://doi.org/10.31830/2348-7542.2020.016
  77. 77. Due MS, Susilowati A, Yunus A. The effect of gamma rays irradiation on diversity of Musa paradisiaca var. sapientum as revealed by ISSR molecular marker. Biodiversitas. 2019;20(5). https://doi.org/10.13057/biodiv/d200534
  78. 78. Çimen B, Yeşiloğlu T, Kaçar YA. Effects of gamma irradiation on seedlessness and fruit quality of Ortanique tangor. Turk J Agric Food Sci Technol. 2020;8(2):329–36. https://doi.org/10.24925/turjaf.v8i2.329-336.3024
  79. 79. érez-Jiménez M, Tallón CI, Pérez-Tornero O. Inducing mutations in Citrus spp.: Sensitivity of different sources of plant material to gamma radiation. Appl Radiat Isot. 2020;157:109030. https://doi.org/10.1016/j.apradiso.2019.109030
  80. 80. Kundu M, Dubey A, Srivastav M, Malik SK. Induction of haploid plants in citrus through gamma-irradiated pollen and ascertainment of ovule age for maximum recovery of haploid plantlets. Turk J Biol. 2017;41(3):469–83. https://doi.org/10.3906/biy-1606-28
  81. 81. Deng R, Fan J, Wang Y, Liu T, Jin J. Mutation induction of EMS and 60Co γ irradiation in in vitro cultured seedlings of red pulp pitaya (Stenocereus) and ISSR analyzing of mutant. BMC Plant Biol. 2020:1–20. https://doi.org/10.21203/rs.3.rs-19273/v1
  82. 82. Singha I, Poria DK, Ray PS, Das SK. Role of grape (Vitis vinifera) extracts of different cultivars against γ-radiation-induced DNA damage and gene expression in human lymphocytes. Indian J Clin Biochem. 2023:1–9. https://doi.org/10.1007/s12291-023-01154-z
  83. 83. Ekbiç HB, Tangolar S, Ekbiç E. Mutation induction using Co60 in Pembe Çekirdeksiz (Vitis vinifera L.) grape cultivar. Akad Ziraat Derg. 2017;6(2):101–6. https://doi.org/10.29278/azd.371737
  84. 84. Aslam MM, Usman M, Fatima B, Rana MA, Shahid M. Impact of gamma irradiated pollen on sexual compatibility, seed setting, and fruit attributes in guava (Psidium guajava L.) cultivars. Pak J Bot. 2023;55(4):1335–45. https://doi.org/10.30848/PJB2023-4(34)
  85. 85. Maan SS, Gill MIS, Arora NK, Sohi HS. Determination of gamma rays induced mutagenic sensitivity of guava (Psidium guajava L.) cv. ‘Lalit’ and ‘Shweta’. Agric Res J. 2021;58:474–81. https://doi.org/10.5958/2395-146X.2021.00068.5
  86. 86. Yuan P, Shen W, Yang L, Tang J, He K, Xu H, et al. Physiological and transcriptional analyses reveal the resistance mechanisms of kiwifruit (Actinidia chinensis) mutant with enhanced heat tolerance. Plant Physiol Biochem. 2024;207:108331. https://doi.org/10.1016/j.plaphy.2023.108331
  87. 87. Maluszynski M, Nichterlein K, Van Zanten L, Ahloowalia B. Officially released mutant varieties—the FAO/IAEA database; 2000.
  88. 88. Perveen N, Dinesh M, Sankaran M, Shivashankara K, Ravishankar K, Venugopal R, et al. Volatile profiling as a potential biochemical marker for validation of gamma irradiation-derived putative mutants in polyembryonic genotypes of mango (Mangifera indica L.). Front Plant Sci. 2023;14:1168947. https://doi.org/10.3389/fpls.2023.1168947
  89. 89. Santos AMG, Lins SRO, Silva JM, Oliveira SMA. Low doses of gamma radiation in the management of postharvest Lasiodiplodia theobromae in mangos. Braz J Microbiol. 2015;46:841–7. https://doi.org/10.1590/S1517-838246320140363
  90. 90. Yadav M, Patel N, Parmar B, Nayak D. Evaluation of physiological and organoleptic properties of mango cv. Kesar as influenced by ionizing radiation and storage temperature. SAARC J Agric. 2013;11(2):69–80. https://doi.org/10.3329/sja.v11i2.18403
  91. 91. Mahto R, Das M. Effect of gamma irradiation on the physico-chemical and visual properties of mango (Mangifera indica L.), cv. ‘Dushehri’ and ‘Fazli’ stored at 20°C. Postharvest Biol Technol. 2013;86:447–55. https://doi.org/10.1016/j.postharvbio.2013.07.018
  92. 92. Yadav M, Patel N, Patel D, Parmar M. Alphonso mango conservation through exposure to gamma radiation. Afr J Food Sci. 2015;9(3):97–102. https://doi.org/10.5897/AJFS2014.1245
  93. 93. Youssef BM, Asker A, El-Samahy S, Swailam H. Combined effect of steaming and gamma irradiation on the quality of mango pulp stored at refrigerated temperature. Food Res Int. 2002;35(1):1–13. https://doi.org/10.1016/S0963-9969(00)00153-8
  94. 94. Syauqi A, Dadang D, Harahap I, Indarwatmi M. Gamma irradiation against mealybug Dysmicoccus lepelleyi (Betrem) (Hemiptera: Pseudococcidae) on mangosteen fruit (Garcinia mangostana L.) as a quarantine treatment. Radiat Phys Chem. 2021;179:108954. https://doi.org/10.1016/j.radphyschem.2020.108954
  95. 95. Devi M, Kumar C, Rajangam J, Santha S, Sankar C. Determination of lethal dose (LD50) and effect of physical and chemical mutagenesis in acid lime var. PKM. Pharma Innov J. 2021;10(11):583–8.
  96. 96. Husselman J, Daneel M, Sippel A, Severn-Ellis A, editors. Mutation breeding as an effective tool for papaya improvement in South Africa. XXIX Int Hortic Congr Hortic Sust Lives Livelihoods Landsc (IHC2014): IV. 2014;1111. https://doi.org/10.17660/ActaHortic.2016.1111.11
  97. 97. Kumar M, Kumar M, Choudhary V. Effect of seed treatment by ethyl methane sulphonate (EMS) on fruit quality of papaya (Carica papaya L.) cv. Pusa Dwarf. Int J Appl Chem. 2017;13(1):145–50. https://doi.org/10.5958/2230-7338.2016.00012.4
  98. 98. Roohi M, Askarianzadeh A, Zolfagharieh H, Khademi O. Effect of post-harvest irradiation of pomegranate fruit on controlling the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae), and qualitative characteristics of pomegranate fruit. Erwerbs-Obstbau. 2023;65(5):1731–40. https://doi.org/10.1007/s10341-023-00917-5
  99. 99. Sanlı S, Dalkılıç Z. Determination of effective mutation dose on walnut (Juglans regia L. cv. Chandler) budwoods. Adnan Menderes Univ J Agric Fac. 2021;18(1):111–7. https://doi.org/10.25308/aduziraat.859402
  100. 100. Udaya CS. Inducing mutation and ascertaining lethal dosage of in vitro cultures of banana cv. Ney Poovan to ethyl methane sulfonate. Mutat Res Fundam Mol Mech Mutagen. 2024;828:111850. https://doi.org/10.1016/j.mrfmmm.2023.111850
  101. 101. Liu Y, Li Y, Wang A, Xu Z, Li C, Wang Z, et al. Enhancing cold resistance in banana (Musa spp.) through EMS-induced mutagenesis, L-Hyp pressure selection: phenotypic alterations, biomass composition, and transcriptomic insights. BMC Plant Biol. 2024;24(1):101. https://doi.org/10.1186/s12870-024-04775-5
  102. 102. Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, et al. Technologies and perspectives for achieving carbon neutrality. The Innovation. 2021;2(4):100180. https://doi.org/10.1016/j.xinn.2021.100180
  103. 103. Gupta AK, Singh S, Singh M, Marboh E. Mutagenic effectiveness and efficiency of gamma rays and EMS on cape gooseberry (Physalis peruviana L.). Int J Curr Microbiol Appl Sci. 2018;7(2):3254–60. https://doi.org/10.20546/ijcmas.2018.702.390
  104. 104. Bora L, Vijayakumar RM, Ganga M, Ganesan NM, Sarkar M, Kundu M. Determination of mutagenic sensitivity (LD50) of acid lime [Citrus aurantifolia (Christm.) Swingle] cv. PKM-1 to physical and chemical mutagens. Natl Acad Sci Lett. 2024;47(1):73–7. https://doi.org/10.1007/s40009-023-01317-9
  105. 105. Hamouda FG, Hassan NAA, El-Lattief FM, Badawy KA, Saleh SS. Induction of mutations and genetic variations in vitro of sour orange rootstock (Citrus aurantium). Sci J Agric Sci. 2023;5(3):73–92. https://doi.org/10.21608/sjas.2023.231855.1331
  106. 106. Ge H, Li Y, Fu H, Long G, Luo L, Li R, et al. Production of sweet orange somaclones tolerant to citrus canker disease by in vitro mutagenesis with EMS. 2015;123:29-38. https://doi.org/10.1007/s11240-015-0810-7
  107. 107. Maana S, Brar J. Mutagenic sensitivity analysis in guava (L.). Fruits. 2021;76(4):181-90. https://doi.org/10.17660/th2021/76.4.3
  108. 108. Kaur DKaA. Effect of chemical mutagens on seed germination and seedling traits of jamun. Biol Forum – Int J. 2023;15(2):454-60.
  109. 109. Suwanseree V, Phansiri S, Nontaswatsri C, Yapwattanaphun C, editors. Mutation breeding to increase genetic diversity in mangosteen. In: International Symposium on Tropical Fruits; 2020.
  110. 110. Rajbhar YP, Lal S, Kumar M, Singh G, Kumar A, Ullah SS. Studies on effect of EMS (ethyl methanesulphonate) on papaya (Carica papaya L.) seeds under in vitro culture. Int J Agric Food Sci Technol. 2014;5:315–24.
  111. 111. Rawat M, Singh V, Verma S, Rai R, Srivastava R. Determination of LD50 dose for ethyl methane sulphonate induced mutagenesis in Bhagwa pomegranate. Emerg Life Sci Res. 2023;9:61–7. https://doi.org/10.31783/elsr.2023.926167
  112. 112. Huang Y, Li W, Jiao S, Huang J, Chen B. MdMYB66 is associated with anthocyanin biosynthesis via the activation of the MdF3H promoter in the fruit skin of an apple bud mutant. Int J Mol Sci. 2023;24(23):16871. https://doi.org/10.3390/ijms242316871
  113. 113. Jacobson S, Bondarchuk N, Nguyen TA, Canada A, McCord L, Artlip TS, et al. Apple CRISPR-Cas9—A recipe for successful targeting of AGAMOUS-like genes in domestic apple. Plants. 2023;12(21):3693. https://doi.org/10.3390/plants12213693
  114. 114. Rocafort M, Arshed S, Hudson D, Sidhu JS, Bowen JK, Plummer KM, et al. CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis. Fungal Biol. 2022;126(1):35–46. https://doi.org/10.1016/j.funbio.2021.10.001
  115. 115. Zhou H, Bai S, Wang N, Sun X, Zhang Y, Zhu J, et al. CRISPR/Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-mediated silencing of MdCNGC2 in fruits improve resistance to Botryosphaeria dothidea. Front Plant Sci. 2020;11:575477. https://doi.org/10.3389/fpls.2020.575477
  116. 116. Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J. 2020;18(3):845–58. https://doi.org/10.1111/pbi.13253
  117. 117. Malabarba J, Chevreau E, Dousset N, Veillet F, Moizan J, Vergne E. New strategies to overcome present CRISPR/Cas9 limitations in apple and pear: efficient dechimerization and base editing. Int J Mol Sci. 2020;22(1):319. https://doi.org/10.3390/ijms22010319
  118. 118. Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. Efficient targeted mutagenesis in apple and first-time edition of pear using the CRISPR-Cas9 system. Front Plant Sci. 2019;10:40. https://doi.org/10.3389/fpls.2019.00040
  119. 119. Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, et al. CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc. 2018;13(12):2844–63. https://doi.org/10.1038/s41596-018-0067-9
  120. 120. Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci. 2016;7:1904. https://doi.org/10.3389/fpls.2016.01904
  121. 121. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, et al. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep. 2016;6(1):31481. https://doi.org/10.1038/srep31481
  122. 122. Tripathi L, Ntui VO, Tripathi JN. Control of bacterial diseases of banana using CRISPR/Cas-based gene editing. Int J Mol Sci. 2022;23(7):3619. https://doi.org/10.3390/ijms23073619
  123. 123. Shao X, Wu S, Dou T, Zhu H, Hu C, Huo H, et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene‐modified semi‐dwarf banana. Plant Biotechnol J. 2020;18(1):17. https://doi.org/10.1111/pbi.13216
  124. 124. Wu S, Zhu H, Liu J, Yang Q, Shao X, Bi F, et al. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biol. 2020;20:1–10. https://doi.org/10.1186/s12870-020-02609-8
  125. 125. Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol. 2019;2(1):46. https://doi.org/10.1038/s42003-019-0288-7
  126. 126. Kaur N, Alok A, Shivani, Kaur N, Pandey P, Awasthi P, Tiwari S. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genomics. 2018;18:89–99. https://doi.org/10.1007/s10142-017-0577-5
  127. 127. Naim F, Dugdale B, Kleidon J, Brinin A, Shand K, Waterhouse P, et al. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res. 2018;27:451–60. https://doi.org/10.1007/s11248-018-0083-0
  128. 128. Han X, Yang Y, Han X, Ryner JT, Ahmed EA, Qi Y, et al. CRISPR Cas9-and Cas12a-mediated gusA editing in transgenic blueberry. Plant Cell Tissue Organ Cult. 2022;148:217-29. https://doi.org/10.1007/s11240-021-02177-1
  129. 129. Vaia G, Pavese V, Moglia A, Cristofori V, Silvestri C. Knockout of phytoene desaturase gene using CRISPR/Cas9 in highbush blueberry. Front Plant Sci. 2022;13:1074541. https://doi.org/10.3389/fpls.2022.1074541
  130. 130. Omori M, Yamane H, Osakabe K, Osakabe Y, Tao R. Targeted mutagenesis of centroradialis using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry. J Hortic Sci Biotechnol. 2021;96(2):153–61. https://doi.org/10.1080/14620316.2020.1822760
  131. 131. Ferrão LFV, Amadeu RR, Benevenuto J, de Bem Oliveira I, Munoz PR. Genomic selection in an outcrossing autotetraploid fruit crop: lessons from blueberry breeding. Front Plant Sci. 2021;12:676326. https://doi.org/10.3389/fpls.2021.676326
  132. 132. Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci. 2018;9:268. https://doi.org/10.3389/fpls.2018.00268
  133. 133. Jia H, Wang N. Generation of homozygous canker‐resistant citrus in the T0 generation using CRISPR‐SpCas9p. Plant Biotechnol J. 2020;18(10):1990. https://doi.org/10.1111/pbi.13375
  134. 134. Huang X, Yan H, Liu Y, Yi Y. Genome-wide analysis of lateral organ boundaries domain in Physcomitrella patens and stress responses. Genes Genom. 2020;42:651–62. https://doi.org/10.1007/s13258-020-00931-x
  135. 135. Zhu QG, Xu Y, Yang Y, Guan CF, Zhang QY, Huang JW, et al. The persimmon (Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. Hortic Res. 2019;6:138. https://doi.org/10.1038/s41438-019-0227-2
  136. 136. Jia H, Wang N, editors. Editing citrus genome via SaCas9/sgRNA system. In: Int Congr Plant Pathol (ICPP) 2018: Plant Health in a Global Economy. APSNET; 2018. https://doi.org/10.3389/fpls.2017.02135
  137. 137. Jia H, Orbovic V, Jones JB, Wang N. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol J. 2016;14(5):1291–301. https://doi.org/10.1111/pbi.12495
  138. 138. Jia H, Wang N. Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep. 2014;33:1993–2001. https://doi.org/10.1007/s00299-014-1673-9
  139. 139. Flaishman M, Peer R, Raz A, Cohen O, Izhaki K, Bocobza S, et al., editors. Advanced molecular tools for breeding in Mediterranean fruit trees: genome editing approach of Ficus carica L. In: XXX Int Hortic Congr IHC2018: Int Symp Nuts Mediterr Climate Fruits, Carob and X 1280; 2018. https://doi.org/10.17660/ActaHortic.2020.1280.1
  140. 140. Ren C, Liu Y, Guo Y, Duan W, Fan P, Li S, et al. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Hortic Res. 2021;8:52. https://doi.org/10.1038/s41438-021-00489-z
  141. 141. Wang X, Tu M, Wang Y, Yin W, Zhang Y, Wu H, et al. Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Hortic Res. 2021;8:156. https://doi.org/10.1038/s41438-021-00567-8
  142. 142. Wan D-Y, Guo Y, Cheng Y, Hu Y, Xiao S, Wang Y, Wen Y-Q. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic Res. 2020;7:116. https://doi.org/10.1038/s41438-020-00339-7
  143. 143. Li M-Y, Jiao Y-T, Wang Y-T, Zhang N, Wang B-B, Liu R-Q, et al. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Hortic Res. 2020;7:149. https://doi.org/10.1038/s41438-020-00361-9
  144. 144. Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J. 2018;16(4):844–55. https://doi.org/10.1111/pbi.12832
  145. 145. Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep. 2016;6(1):32289. https://doi.org/10.1038/srep32289
  146. 146. Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants. 2018;4(10):766–70. https://doi.org/10.1038/s41477-018-0259-x
  147. 147. Gumtow R, Wu D, Uchida J, Tian M. A Phytophthora palmivora extracellular cystatin-like protease inhibitor targets papain to contribute to virulence on papaya. Mol Plant Microbe Interact. 2018;31(3):363–73. https://doi.org/10.1094/MPMI-08-17-0200-R
  148. 148. Ming M, Long H, Ye Z, Pan C, Chen J, Tian R, et al. Highly efficient CRISPR systems for loss-of-function and gain-of-function research in pear calli. Hortic Res. 2022;9:uhac148. https://doi.org/10.1093/hr/uhac148
  149. 149. Pang H, Yan Q, Zhao S, He F, Xu J, Qi B, Zhang Y. Knockout of the S-acyltransferase gene, PbPAT14, confers the dwarf yellowing phenotype in first generation pear by ABA accumulation. Int J Mol Sci. 2019;20(24):6347. https://doi.org/10.3390/ijms20246347
  150. 150. Herath D, Voogd C, Mayo-Smith M, Yang B, Allan AC, Putterill J, Varkonyi-Gasic E. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype. Plant Biotechnol J. 2022;20(11):2064–76. https://doi.org/10.1111/pbi.13841
  151. 151. De Mori G, Zaina G, Franco-Orozco B, Testolin R, De Paoli E, Cipriani G. Targeted mutagenesis of the female-suppressor SyGI gene in tetraploid kiwifruit by CRISPR/CAS9. Plants. 2020;10(1):62. https://doi.org/10.3390/plants10010062
  152. 152. Chang L, Wu S, Tian L. Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyltransferase in pomegranate (Punica granatum L.). Hortic Res. 2019;6:145. https://doi.org/10.1038/s41438-019-0215-9
  153. 153. Akter F, Wu S, Islam MS, Kyaw H, Yang J, Li M, et al. An efficient Agrobacterium-mediated genetic transformation system for gene editing in strawberry (Fragaria ananassa). Plants. 2024;13(5):563. https://doi.org/10.3390/plants13050563
  154. 154. Kim J-H, Yoo C-M, Nguyen CD, Huo H, Lee S. Optimization of shoot regeneration and application of CRISPR/Cas9 gene editing to cultivated strawberry (Fragaria ananassa). bioRxiv. 2023:2023.08.13.553153. https://doi.org/10.1101/2023.08.13.553153
  155. 155. López-Casado G, Sánchez-Raya C, Ric-Varas PD, Paniagua C, Blanco-Portales R, Muñoz-Blanco J, et al. CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness. Hortic Res. 2023;10(3):uhad011. https://doi.org/10.1093/hr/uhad011
  156. 156. Mao W, Han Y, Chen Y, Sun M, Feng Q, Li L, et al. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell. 2022;34(4):1226–49. https://doi.org/10.1093/plcell/koac021
  157. 157. Feng J, Cheng L, Zhu Z, Yu F, Dai C, Liu Z, et al. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. Plant Physiol. 2021;186(4):1970–84. https://doi.org/10.1093/plphys/kiab216
  158. 158. Gao Q, Luo H, Li Y, Liu Z, Kang C. Genetic modulation of RAP alters fruit coloration in both wild and cultivated strawberry. Plant Biotechnol J. 2020;18(7):1550–61. https://doi.org/10.1111/pbi.13316
  159. 159. Feng J, Dai C, Luo H, Han Y, Liu Z, Kang C. Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. J Exp Bot. 2019;70(2):563–74. https://doi.org/10.1093/jxb/ery365

Downloads

Download data is not yet available.