Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Unravelling the bioactive potential: Phytochemical and antimicrobial potential of leaf and bark extracts of Pterocarpus dalbergioides Roxb. ex DC. (Andaman Padauk)

DOI
https://doi.org/10.14719/pst.8991
Submitted
20 April 2025
Published
22-10-2025

Abstract

Therapeutic herbs are recognized as valuable sources of bioactives that are utilized in pharmaceutical research. Pterocarpus dalbergioides Roxb. ex DC., commonly called as Andaman padauk or narra, is a medicinal tree endemic to the Andaman Islands, renowned for its therapeutic properties against various health conditions. In this study, phytochemical constituents were quantitatively analysed through Gas Chromatography- Mass Spectrometry (GC-MS) and antibacterial activity was evaluated. The GC-MS analysis indicated a presence of about 100 metabolities with major metabolites including bis(2-ethylhexyl) phthalate, alpha-methyl mannofuranoside, stigmasterol and dotriacontane. The antibacterial assay revealed inhibition zones ranging from 10-13mm and 8-11mm against Staphylococcus aureus, Escherichia coli respectively, with the bark extract of P. dalbergioides while the leaf extract showed inhibition zones of 8-9mm. This pioneering research on the endemic species provides valuable information for further pharmacological research.

References

  1. 1. Kadam PV, Deoda RS, Shivatare RS, Yadav KN, Patil MJ. Pharmacognostic, phytochemical and physiochemical studies of Mimusops elengi Linn stem bark (Sapotaceae). Der Pharm Lett. 2012;4(2):607–13.
  2. 2. Rashida V, Nisha A. Phytochemical and chromatographic analysis of flavonoid fraction isolated from methanolic extract of Pterocarpus marsupium. J Phytopharm. 2022;11:79–88. https://doi.org/10.31254/phyto.2022.11205
  3. 3. Alnusaire TS, Sabouni IL, Khojah H, Qasim S, Al-Sanea MM, Siddique S, et al. Integrating chemical profiling, in vivo study and network pharmacology to explore the anti-inflammatory effect of Pterocarpus dalbergioides fruits and its correlation with the major phytoconstituents. ACS Omega. 2023;8(36):32544–54. https://doi.org/10.1021/acsomega.3c02940
  4. 4. Mondal P, Landge ST. A review article on an Andaman’s endemic species i.e. Andaman Redwood (Pterocarpus dalbergioides Roxb.) which is described in Ayurveda as Vijaysar. Int J Sci Res. 2019;8(4):568–76.
  5. 5. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6. https://doi.org/10.1093/ajcp/45.4_ts.493
  6. 6. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee L-H, El Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants (Basel). 2022;11(10):1912. https://doi.org/10.3390/antiox11101912
  7. 7. Lee KH, Kim JH, Lim DS, Kim CH. Anti-leukaemic and anti-mutagenic effects of di(2-ethylhexyl) phthalate isolated from Aloe vera Linne. J Pharm Pharmacol. 2000;52(5):593–8. https://doi.org/10.1211/0022357001774246
  8. 8. Javed MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, et al. The antibacterial and larvicidal potential of bis(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum. Molecules. 2022;27(21):7220. https://doi.org/10.3390/molecules27217220
  9. 9. Asong JA, Amoo SO, McGaw LJ, Nkadimeng SM, Aremu AO, Otang-Mbeng W. Antimicrobial activity, antioxidant potential, cytotoxicity and phytochemical profiling of four plants locally used against skin diseases. Plants (Basel). 2019;8(9):350. https://doi.org/10.3390/plants8090350
  10. 10. Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, et al. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res. 2021;164:105373. https://doi.org/10.1016/j.phrs.2020.105373
  11. 11. Sirikhansaeng P, Tanee T, Sudmoon R, Chaveerach A. Major phytochemical as γ-sitosterol disclosing and toxicity testing in Lagerstroemia species. Evid Based Complement Alternat Med. 2017;2017:7209851. https://doi.org/10.1155/2017/7209851
  12. 12. Wang C, Fan A, Zhu X, Lu Y, Deng S, Gao W, et al. Trace quantification of 1-triacontanol in beagle plasma by GC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr. 2015;29(5):749–55. https://doi.org/10.1002/bmc.3351
  13. 13. Bharathi B, Prasad N. In vitro antimicrobial assay of an alkaloid isolated from the leaves of Pterocarpus santalinus L.F. Res J Chem Sci. 2020;10(2):46–52.
  14. 14. Odeh IC, Tor-Anyiin TA, Igoli JO, Anyam JV. In vitro antimicrobial properties of friedelan-3-one from Pterocarpus santalinoides L’Herit ex DC. Afr J Biotechnol. 2016;15(14):531–8. https://doi.org/10.5897/AJB2015.15091
  15. 15. Samie A, Housein A, Lall N, Meyer JJM. Crude extracts of and purified compounds from, Pterocarpus angolensis and the essential oil of Lippia javanica: their in-vitro cytotoxicities and activities against selected bacteria and Entamoeba histolytica. Ann Trop Med Parasitol. 2009;103(5):427–39. https://doi.org/10.1179/136485909X435111
  16. 16. Tittikpina NK, Nana F, Fontanay S, Philippot S, Batawila K, Akpagana K, et al. Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts, fractions and isolated compounds. J Ethnopharmacol. 2018;212:200–7. https://doi.org/10.1016/j.jep.2017.10.020
  17. 17. Okoli EC, Umaru IJ, Olawale O. Assessment of phytochemical compositions, antibacterial effects and DPPH scavenging activities of ethanolic root extracts of Pterocarpus erinaceus. Asian J Nat Prod Biochem. 2022;20(2). https://doi.org/10.13057/biofar/f200203
  18. 18. Verma C, Devi B. Anti-oxidant, anti-inflammatory and anti-microbial activity of Pterocarpus santalinus L.F. Pak Heart J. 2023;56(3):1020–7.
  19. 19. Kachhawa JBS, Sharma N, Tyagi S, Gupta RS, Sharma KK. In vitro evaluation of antibacterial activity of Pterocarpus marsupium Roxb. Int J Pharm Pharm Sci. 2012;4(1).
  20. 20. Pinto ME, Araújo SG, Morais MI, Sa NP, Lima CM, Rosa CA, et al. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An Acad Bras Cienc. 2017;89(3):1671–81. https://doi.org/10.1590/0001-3765201720160908
  21. 21. LS AK, Anand S. The gas chromatography mass spectrometry analysis of an Ayurvedic formulation Amruthadi Kashaya. Int J Ayurveda Pharma Res. 2024;12(2):1–6. https://doi.org/10.47070/ijapr.v12i2.3098
  22. 22. Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ. In vivo neuropharmacological effects of neophytadiene. Molecules. 2023;28(8):3457. https://doi.org/10.3390/molecules28083457
  23. 23. Singh SP, Sashidhara KV. Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur J Med Chem. 2017;140:331–48. https://doi.org/10.1016/j.ejmech.2017.09.020

Downloads

Download data is not yet available.