Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Genetic insights into biofilm enhancement: The impact of yicC gene disruption in Pseudomonas plecoglossicida NAN2

DOI
https://doi.org/10.14719/pst.9021
Submitted
22 April 2025
Published
08-10-2025

Abstract

Biofilm formation plays a pivotal role in mediating plant-microbial interactions. However, despite its significance, the molecular mechanisms underlying biofilm formation by Pseudomonas plecoglossicida remain largely unexplored. Thus, this study aimed to identify genetic determinants involved in biofilm regulation by constructing a transposon mutant library of P. plecoglossicida NAN2. From the 2000 mutants screened, one mutant (M770) exhibited significantly superior biofilm production and distinct colony morphology and pellicle formation compared with the wild-type strain. Arbitrary PCR analysis revealed that the disrupted gene in M770 encoded a YicC family protein. Interestingly, despite the enhanced biofilm formation, root colonization assays indicated that the mutation in the yicC did not impair the ability of M770 to colonize plant roots. To the best of our knowledge, this is the first report on a transposon mutant with enhanced biofilm formation linked to a mutation in the yicC gene in P. plecoglossicida NAN2. These findings offer new insights into the regulatory role of the yicC in biofilm formation, providing potential targets for modulating biofilm dynamics in plant-microbe systems.

References

  1. 1. Ajijah N, Fiodor A, Pandey AK, Rana A, Pranaw K. Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity. 2023;15(1):112. https://doi.org/10.3390/d15010112
  2. 2. Shah SS, van Dam J, Singh A, Kumar S, Kumar S, Bundela DS, et al. Impact of irrigation, fertilizer and pesticide management practices on groundwater and soil health in the rice–wheat cropping system-a comparison of conventional, resource conservation technologies and conservation agriculture. Environ Sci Pollut Res. 2025;32(2):533-58. https://doi.org/10.1007/s11356-024-35661-0
  3. 3. Hasan A, Tabassum B, Hashim M, Khan N. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: a review. Bacteria. 2024;3(2):59-75. https://doi.org/10.3390/bacteria3020005
  4. 4. Figiel S, Rusek P, Ryszko U, Brodowska MS. Microbially enhanced biofertilizers: technologies, mechanisms of action and agricultural applications. Agronomy. 2025;15(5):1191. https://doi.org/10.3390/agronomy15051191
  5. 5. Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012;2012(1):963401. https://doi.org/10.6064/2012/963401
  6. 6. Feng Q, Luo Y, Liang M, Cao Y, Wang L, Liu C, et al. Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil. Nat Commun. 2025;16(1):1-6. https://doi.org/10.1038/s41467-025-56988-3
  7. 7. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 2011;35(4):652-80. https://doi.org/10.1111/j.1574-6976.2011.00269.x
  8. 8. Yang R, Du X, Khojasteh M, Shah SM, Peng Y, Zhu Z, et al. Green guardians: the biocontrol potential of Pseudomonas-derived metabolites for sustainable agriculture. Biol Control. 2025:105699. https://doi.org/10.1016/j.biocontrol.2025.105699
  9. 9. Khatri S, Sazinas P, Strube ML, Ding L, Dubey S, Shivay YS, et al. Pseudomonas is a key player in conferring disease suppressiveness in organic farming. Plant Soil. 2024;503(1):85-104. https://doi.org/10.1007/s11104-023-05927-6
  10. 10. Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol. 2024;15:1485197. https://doi.org/10.1016/j.plantsci.2017.11.012
  11. 11. Zerrouk IZ, Rahmoune B, Khelifi L, Mounir K, Baluska F, Ludwig-Müller J. Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiol Plant. 2019;41(6):91. https://doi.org/10.1007/s11738-019-2881-2
  12. 12. Makhlouf KE, Karima B, Slimane M. Pseudomonas plecoglossicida (NR_114226) as a novel biocontrol agent against Fusarium crown rot of wheat. J Phytopathol. 2024;172(2):e13304. https://doi.org/10.1111/jph.13304
  13. 13. Jagtap RR, Mali GV, Waghmare SR, Nadaf NH, Nimbalkar MS, Sonawane KD. Impact of plant growth promoting rhizobacteria Serratia nematodiphila RGK and Pseudomonas plecoglossicida RGK on secondary metabolites of turmeric rhizome. Biocatal Agric Biotechnol. 2023;47:102622. https://doi.org/10.1016/j.bcab.2023.102622
  14. 14. Bogino PC, de las Mercedes Oliva M, Sorroche FG, Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci. 2013;14(8):15838-59. https://doi.org/10.3390/ijms140815838
  15. 15. Yang L, Qian X, Zhao Z, Wang Y, Ding G, Xing X. Mechanisms of rhizosphere plant-microbe interactions: molecular insights into microbial colonization. Front Plant Sci. 2024;15:1491495. https://doi.org/10.3389/fpls.2024.1491495
  16. 16. Chiquito-Contreras CJ, Meza-Menchaca T, Guzmán-López O, Vásquez EC, Ricaño-Rodríguez J. Molecular insights into plant-microbe interactions: a comprehensive review of key mechanisms. Front Biosci Elite. 2024;16(1):9. https://doi.org/10.31083/j.fbe1601009
  17. 17. Brokate O, Papenbrock J, Turcios AE. Biofilm-forming microorganisms in the rhizosphere to improve plant growth: coping with abiotic stress and environmental pollution. Appl Soil Ecol. 2024;202:105591. https://doi.org/10.1016/j.apsoil.2024.105591
  18. 18. Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, et al. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev. 2024;48(1):fuad066. https://doi.org/10.1093/femsre/fuad066
  19. 19. Chen L, Liu Y. The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology. 2024;13(2):95. https://doi.org/10.3390/biology13020095
  20. 20. Carezzano ME, Paletti Rovey MF, Cappellari LD, Gallarato LA, Bogino P, Oliva MD, et al. Biofilm-forming ability of phytopathogenic bacteria: a review of its involvement in plant stress. Plants. 2023;12(11):2207. https://doi.org/10.3390/plants12112207
  21. 21. Wang DC, Jiang CH, Zhang LN, Chen L, Zhang XY, Guo JH. Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. Int J Mol Sci. 2019;20(24):6271. https://doi.org/10.3390/ijms20246271
  22. 22. Singh P, Singh RK, Guo DJ, Sharma A, Singh RN, Li DP, et al. Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18-a plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Front Microbiol. 2021;12:628376. https://doi.org/10.3389/fmicb.2021.628376
  23. 23. Zhang L, Chen W, Jiang Q, Fei Z, Xiao M. Genome analysis of plant growth-promoting rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca JD37 and insights from comparasion of genomics with three Pseudomonas strains. Microbiol Res. 2020;237:126483. https://doi.org/10.1016/j.micres.2020.126483
  24. 24. Nandhini K, Ganesan G, Iyappan S. Genomic insights into the antifungal and plant growth-promoting traits of Pseudomonas plecoglossicida NAN2 isolated from the rice rhizosphere. Plant Sci Today. 2025;12(3):1-10. https://doi.org/10.14719/pst.8862
  25. 25. Brumwell SL, Van Belois KD, Giguere DJ, Edgell DR, Karas BJ. Conjugation-based genome engineering in Deinococcus radiodurans. ACS Synth Biol. 2022;11(3):1068-76. https://doi.org/10.1021/acssynbio.1c00524
  26. 26. Grossman AB, Burgin DJ, Rice KC. Quantification of Staphylococcus aureus biofilm formation by crystal violet and confocal microscopy. In: Rice KC, editor. Staphylococcus aureus: methods and protocols. New York: Springer; 2021. p. 69-78 https://doi.org/10.1007/978-1-0716-1550-8_9
  27. 27. Gangaiah D, Liu Z, Arcos J, Kassem II, Sanad Y, Torrelles JB, et al. Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni. PLoS One. 2010;5(8):e12142. https://doi.org/10.1371/journal.pone.0012142
  28. 28. Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol. 2004;186(14):4457-65. https://doi.org/10.1128/jb.186.14.4457-4465.2004
  29. 29. Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker-Nielsen T. The exopolysaccharide gene cluster Bcam1330–Bcam1341 is involved in Burkholderia cenocepacia biofilm formation and its expression is regulated by c-di-GMP and Bcam1349. Microbiologyopen. 2013;2(1):105-22. https://doi.org/10.1002/mbo3.61
  30. 30. Tian Y, Guan B, Zhou D, Yu J, Li G, Lou Y. Responses of seed germination, seedling growth and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci World J. 2014;2014:834630. https://doi.org/10.1155/2014/834630
  31. 31. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  32. 32. Posada LF, Álvarez JC, Romero-Tabarez M, de-Bashan L, Villegas-Escobar V. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol Res. 2018;217:69-80. https://doi.org/10.1016/j.micres.2018.08.017
  33. 33. Zhang M, Wang X, Ahmed T, Liu M, Wu Z, Luo J, et al. Identification of genes involved in antifungal activity of Burkholderia seminalis against Rhizoctonia solani using Tn5 transposon mutation method. Pathogens. 2020;9(10):797. https://doi.org/10.3390/pathogens9100797
  34. 34. Sivakumar R, Ranjani J, Vishnu US, Jayashree S, Lozano GL, Miles J, et al. Evaluation of InSeq to identify genes essential for Pseudomonas aeruginosa PGPR2 corn root colonization. G3 (Bethesda). 2019;9(3):651-61. https://doi.org/10.1534/g3.118.200928
  35. 35. Das S, Noe JC, Paik S, Kitten T. An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods. 2005;63(1):89-94. https://doi.org/10.1016/j.mimet.2005.02.011
  36. 36. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32(suppl_2):W20-5. https://doi.org/10.1093/nar/gkh435
  37. 37. Fernández-García G, Valdés-Chiara P, Villazán-Gamonal P, Alonso-Fernández S, Manteca A. Essential genes discovery in microorganisms by transposon-directed sequencing (Tn-Seq): experimental approaches, major goals and future perspectives. Int J Mol Sci. 2024;25(20):11298. https://doi.org/10.3390/ijms252011298
  38. 38. Ueda A, Ogasawara S, Horiuchi K. Identification of the genes controlling biofilm formation in the plant commensal Pseudomonas protegens Pf-5. Arch Microbiol. 2020;202(9):2453-9. https://doi.org/10.1007/s00203-020-01966-0
  39. 39. Martins D, DiCandia MA, Mendes AL, Wetzel D, McBride SM, Henriques AO, et al. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Sci Rep. 2021;11(1):7887. https://doi.org/10.1038/s41598-021-86878-9
  40. 40. Deblais L, Ranjit S, Vrisman C, Antony L, Scaria J, Miller SA, et al. Role of stress-induced proteins RpoS and YicC in the persistence of Salmonella enterica subsp. enterica serotype Typhimurium in tomato plants. Mol Plant Microbe Interact. 2023;36(2):109-18. https://doi.org/10.1094/MPMI-07-22-0152-R
  41. 41. Martín-Rodríguez AJ, Villion K, Yilmaz-Turan S, Vilaplana F, Sjöling Å, Römling U. Regulation of colony morphology and biofilm formation in Shewanella algae. Microb Biotechnol. 2021;14(3):1183-200. https://doi.org/10.1111/1751-7915.13788
  42. 42. Bright JP, Maheshwari HS, Thangappan S, Perveen K, Bukhari NA, Mitra D, et al. Biofilmed-PGPR: next-generation bioinoculant for plant growth promotion in rice under changing climate. Rice Sci. 2025;32(1):94-106. https://doi.org/10.1016/j.rsci.2024.08.008
  43. 43. Ingle S, Chhabra S, Chen J, Lazarus MB, Luo X, Bechhofer DH. Discovery and initial characterization of YloC, a novel endoribonuclease in Bacillus subtilis. RNA. 2022;28(2):227-38. https://doi.org/10.1261/rna.078962.121

Downloads

Download data is not yet available.