Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Brassinosteroids regulated target genes and their molecular evolution and interaction in rice (Oryza sativa L.) response to salt stress

DOI
https://doi.org/10.14719/pst.9038
Submitted
23 April 2025
Published
06-10-2025 — Updated on 17-10-2025
Versions

Abstract

Rice growth and development are significantly affected by salt stress. Exploring salt stress-tolerant genes and their regulatory pathways is essential for sustaining productivity and ensuring food security. The brassinazole-resistant 1 (BZR1)/BRI1-EMS1 suppressor (BES1) transcription factors play pivotal roles in regulating plant development and stress responses. However, studies specifically linking BZR1 to salt tolerance in rice remain limited. In this study, 33 predicted common differentially expressed genes (cDEGs) interacting with BZR1 were identified and functionally characterized to encounter salt stress in rice. The phylogenetic relationship analysis revealed a strong evolutionary relationship between these rice genes and known Arabidopsis salt-tolerant genes. Gene ontology (GO) enrichment further confirmed that the cDEGs are significantly associated with key biological processes involved in the rice salt stress response. RNA-Seq results revealed distinct expression patterns of cDEGs between shoots and roots. In the shoots, 22 cDEGs were up-regulated, while 11 were down-regulated. In the roots, 14 cDEGs were up-regulated and 19 were down-regulated. This indicates tissue-specific regulatory responses under the experimental conditions. These findings highlight the differential regulatory roles of BZR1 across tissues under salt stress conditions. Overall, this study offers new insights into the molecular mechanisms underlying BZR1-mediated salt tolerance and identifies promising candidate genes for future experimental validation and the development of salt-tolerant rice cultivars.

References

  1. 1. Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience. 2017;67(4):386-91. https://doi.org/10.1093/biosci/bix010
  2. 2. Lelekami MA, Pahlevani MH, Nezhad KZ, Mashaki KM, Brilhaus D, Weber AP. Integrated transcriptome and protein-protein interaction network analysis uncovers pivotal ribosomal proteins and ion transporters involved in rice salt tolerance. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-2985182/v1
  3. 3. Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of plant responses to salt stress. Int J Mol Sci. 2021;22(9):4609. https://doi.org/10.3390/ijms22094609
  4. 4. Yusuf M, Saeed T, Almenhali HA, Azzam F, Hamzah AI, Khan TA. Melatonin improved efficiency of 24-epibrassinolide to counter the collective stress of drought and salt through osmoprotectant and antioxidant system in pea plants. Sci Hortic. 2024;323:112453. https://doi.org/10.1016/j.scienta.2023.112453
  5. 5. Hussain S, Zhang JH, Zhong C, Bohr JA. Effects of salt stress on rice growth, development characteristics and the regulating ways: a review. J Integr Agric. 2017;16(11):2357-74. https://doi.org/10.1016/S2095-3119(16)61608-8
  6. 6. Romo-Pérez ML, Weinert CH, Egert B, Kulling SE, Zörb C. The tale of two ions Na+ and Cl−: unraveling onion plant responses to varying salt treatments. BMC Plant Biol. 2024;24(1):1022. https://doi.org/10.1186/s12870-024-05719-9
  7. 7. Kumari S, Chhillar H, Chopra P, Khanna RR, Khan MI. Potassium: a track to develop salinity tolerant plants. Plant Physiol Biochem. 2021;167:1011-23. https://doi.org/10.1016/j.plaphy.2021.09.031
  8. 8. Sardar H, Khalid Z, Ahsan M, Naz S, Nawaz A, Ahmad R, et al. Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants. 2023;12(5):1115. https://doi.org/10.3390/plants12051115
  9. 9. Yue J, You Y, Zhang L, Fu Z, Wang J, Zhang J, Guy RD. Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. J Plant Growth Regul. 2019;38:669-82. https://doi.org/10.1007/s00344-018-9881-0
  10. 10. Zhang HY, Wang X, Wang XN, Liu HF, Zhang TT, Wang DR, et al. Brassinosteroids biosynthetic gene MdBR6OX2 regulates salt stress tolerance in both apple and Arabidopsis. Plant Physiol Biochem. 2024;212:108767. https://doi.org/10.1016/j.plaphy.2024.108767
  11. 11. Zeng H, Tang Q, Hua X. Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. J Plant Growth Regul. 2010;29(1):44-52. https://doi.org/10.1007/s00344-009-9111-x
  12. 12. Wang X, Chen X, Wang Q, Chen M, Liu X, Gao D, et al. MdBZR1 and MdBZR1-2like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple. Front Plant Sci. 2019;10:1473. https://doi.org/10.3389/fpls.2019.01473
  13. 13. Rajkumari N, Chowrasia S, Nishad J, Ganie SA, Mondal TK. Metabolomics-mediated elucidation of rice responses to salt stress. Planta. 2023;258(6):111. https://doi.org/10.1007/s00425-023-04258-1
  14. 14. Wang Y, Zhang R, Liu Y, Li R, Ge J, Deng S, et al. Rice response to salt stress and research progress in salt tolerance mechanism. Chin J Rice Sci. 2022;36(2):105. https://doi.org/10.16819/j.1001-7216.2022.210609
  15. 15. Yao T, Xie R, Zhou C, Wu X, Li D. Roles of brossinosteroids signaling in biotic and abiotic stresses. J Agric Food Chem. 2023;71(21):7947-60. https://doi.org/10.1021/acs.jafc.2c07493
  16. 16. Kloc Y, Dmochowska-Boguta M, Żebrowska-Różańska P, Łaczmański Ł, Nadolska-Orczyk A, Orczyk W. HvGSK1.1 controls salt tolerance and yield through the brassinosteroid signaling pathway in barley. Int J Mol Sci. 2024;25(2):998. https://doi.org/10.3390/ijms25020998
  17. 17. Nolan T, Chen J, Yin Y. Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochem J. 2017;474(16):2641-61. https://doi.org/10.1042/BCJ20160633
  18. 18. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol. 2009;11(10):1254-60. https://doi.org/10.1038/ncb1970
  19. 19. He JX, Gendron JM, Yang Y, Li J, Wang ZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA. 2002;99(15):10185-90. https://doi.org/10.1073/pnas.152342599
  20. 20. Vert G, Chory J. Downstream nuclear events in brassinosteroid signalling. Nature. 2006;441(7089):96-100. https://doi.org/10.1038/nature04681
  21. 21. Li L, Mu T, Zhang R, Zhang G, Lyu J, Liu Z, et al. The BES1/BZR1 family transcription factor as critical regulator of plant stress resilience. Plant Stress. 2025;15:100730. https://doi.org/10.1016/j.stress.2024.100730
  22. 22. Qiu R, Zhou Y, Mao J. Brassinosteroid signaling dynamics: ubiquitination-dependent regulation of core signaling components. Int J Mol Sci. 2025;26(10):4502. https://doi.org/10.3390/ijms26104502
  23. 23. Sun Y, Han Z, Tang J, Hu Z, Chai C, Zhou B, et al. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res. 2013;23(11):1326-9. https://doi.org/10.1038/cr.2013.131
  24. 24. Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell. 2007;19(9):2749-62. https://doi.org/10.1105/tpc.107.053728
  25. 25. He Y, Zhao Y, Hu J, Wang L, Li L, Zhang X, et al. The OsBZR1-OsSPX1/2 module fine-tunes the growth-immunity trade-off in adaptation to phosphate availability in rice. Mol Plant. 2024;17(2):258-76. https://doi.org/10.1016/j.molp.2023.12.003
  26. 26. Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, et al. Integrative approach for precise genotyping and transcriptomics of salt tolerant introgression rice lines. Front Plant Sci. 2022;12:797141. https://doi.org/10.3389/fpls.2021.797141
  27. 27. Gutjahr C, Sawers RJ, Marti G, Andrés-Hernández L, Yang SY, Casieri L, et al. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proc Natl Acad Sci USA. 2015;112(21):6754-9. https://doi.org/10.1073/pnas.1504142112
  28. 28. Chao J, Li Z, Sun Y, Aluko OO, Wu X, Wang Q, et al. MG2C: A user-friendly online tool for drawing genetic maps. Mol Hort. 2021;1:1-4. https://doi.org/10.1186/s43897-021-00020-x
  29. 29. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, De Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40(W1):W597-603. https://doi.org/10.1093/nar/gks400
  30. 30. Mas-ud MA, Chowdhury MR, Juthee SA, Rabbee MF, Matin MN, Kang SG. Unravelling the current status of rice stripe mosaic virus: its geographical spread, biology, epidemiology and management. Agronomy. 2024;14(10):2442. https://doi.org/10.3390/agronomy14102442
  31. 31. Zhou T, Xu K, Zhao F, Liu W, Li L, Hua Z, et al. iTol. toolkit accelerates working with iTOL (Interactive Tree of Life) by an automated generation of annotation files. Bioinformatics. 2023;39(6):btad339. https://doi.org/10.1093/bioinformatics/btad339
  32. 32. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-46. https://doi.org/10.1093/nar/gkac1000
  33. 33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. https://doi.org/10.1101/gr.1239303
  34. 34. Basar MA, Hosen MF, Paul BK, Hasan MR, Shamim SM, Bhuyian T. Identification of drug and protein-protein interaction network among stress and depression: a bioinformatics approach. Inform Med Unlocked. 2023;37:101174. https://doi.org/10.1016/j.imu.2023.101174
  35. 35. Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19:1-24. https://doi.org/10.1186/s12859-018-2486-6
  36. 36. Li Q, Ma C, Tai H, Qiu H, Yang A. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress. PLoS One. 2020;15(12):e0243112. https://doi.org/10.1371/journal.pone.0243112
  37. 37. Sun L, Dong S, Ge Y, Fonseca JP, Robinson ZT, Mysore KS, et al. DiVenn: an interactive and integrated web-based visualization tool for comparing gene lists. Front Genet. 2019;10:421. https://doi.org/10.3389/fgene.2019.00421
  38. 38. Li S, Zheng H, Lin L, Wang F, Sui N. Roles of brassinosteroids in plant growth and abiotic stress response. Plant Growth Regul. 2021;93:29-38. https://doi.org/10.1007/s10725-020-00672-7
  39. 39. Li B, Du Z, Jiang N, He S, Shi Y, Xiao K, et al. Genome-wide identification and expression profiling of the FORMIN gene family implies their potential functions in abiotic stress tolerance in rice (Oryza sativa). Plant Mol Biol Rep. 2023;41(4):573-86. https://doi.org/10.1007/s11105-023-01387-5
  40. 40. He Q, Zhang X, He M, Zhang X, Ma Y, Zhu Y, et al. Genome-wide characterization of RsHSP70 gene family reveals positive role of RsHSP70-20 gene in heat stress response in radish (Raphanus sativus L.). Plant Physiol Biochem. 2023;199:107710. https://doi.org/10.1016/j.plaphy.2023.107710
  41. 41. Wang F, Miao H, Zhang S, Hu X, Chu Y, Yang W, et al. Weighted gene co-expression network analysis reveals hub genes regulating response to salt stress in peanut. BMC Plant Biol. 2024;24(1):425. https://doi.org/10.1186/s12870-024-05145-x
  42. 42. Li W, Zeng Y, Yin F, Wei R, Mao X. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Sci Rep. 2021;11(1):19865. https://doi.org/10.1038/s41598-021-98107-4
  43. 43. Li Q, Ma C, Tai H, Qiu H, Yang A. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress. PLoS One. 2020;15(12):e0243112. https://doi.org/10.1371/journal.pone.0243112
  44. 44. Saha J, Chaudhuri D, Kundu A, Bhattacharya S, Roy S, Giri K. Phylogenetic, structural, functional characterisation and effect of exogenous spermidine on rice (Oryza sativa) HAK transporters under salt stress. Funct Plant Biol. 2022;49(9):160-82. https://doi.org/10.1071/FP22059
  45. 45. Mika S, Rost B. Protein-protein interactions more conserved within species than across species. PLoS Comput Biol. 2006;2(7):e79. https://doi.org/10.1371/journal.pcbi.0020079
  46. 46. Wang N, Shi Y, Jiang Q, Li H, Fan W, Feng Y, et al. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1. Plant Cell Environ. 2023;46(4):1232-48. https://doi.org/10.1111/pce.14520
  47. 47. Chen F, Li Q, Sun L, He Z. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res. 2006;13(2):53-63. https://doi.org/10.1093/dnares/dsl001
  48. 48. Qu R, Wang S, Wang X, Peng J, Guo J, Cui G, et al. Genome-wide characterization and expression of the Hsf gene family in Salvia miltiorrhiza (Danshen) and the potential thermotolerance of SmHsf1 and SmHsf7 in yeast. Int J Mol Sci. 2023;24(10):8461. https://doi.org/10.3390/ijms24108461
  49. 49. Yang X, Zhu W, Zhang H, Liu N, Tian S. Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. PeerJ. 2016;4:e1961. https://doi.org/10.7717/peerj
  50. 50. Zhang H, Li G, Fu C, Duan S, Hu D, Guo X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci Rep. 2020;10(1):8073. https://doi.org/10.1038/s41598-020-65068-z
  51. 51. Xie K, Guo J, Wang S, Ye W, Sun F, Zhang C, et al. Genome-wide identification, classification and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L.). Plant Physiol Biochem. 2023;201:107848. https://doi.org/10.1016/j.plaphy.2023.107848
  52. 52. Suresh NT, Ravindran VE, Krishnakumar U. A computational framework to identify cross association between complex disorders by protein-protein interaction network analysis. Curr Bioinform. 2021;16(3):433-45. https://doi.org/10.2174/1574893615999200724145434
  53. 53. Zhu M, Xie H, Wei X, Dossa K, Yu Y, Hui S, et al. WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice. Genes. 2019;10(9):719. https://doi.org/10.3389/fpls.2016.00567
  54. 54. Ardie SW, Nishiuchi S, Liu S, Takano T. Ectopic expression of the K+ channel β subunits from Puccinellia tenuiflora (KPutB1) and rice (KOB1) alters K+ homeostasis of yeast and Arabidopsis. Mol Biotechnol. 2011;48:76-86. https://doi.org/10.1007/s12033-010-9349-3
  55. 55. Fang Z, Kamasani U, Berkowitz GA. Molecular cloning and expression characterization of a rice K+ channel β subunit. Plant Mol Biol. 1998;37:597-606. https://doi.org/10.1023/A:1005913629485
  56. 56. Banuelos MA, Garciadeblas B, Cubero B, Rodrıguez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 2002;130(2):784-95. https://doi.org/10.1104/pp.007781
  57. 57. Sheng P, Tan J, Jin M, Wu F, Zhou K, Ma W, et al. Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Rep. 2014;33:1581-94. https://doi.org/10.1007/s00299-014-1639-y
  58. 58. Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta. 2011;233:175-88. https://doi.org/10.1007/s00425-010-1289-4
  59. 59. Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 2004;45(2):146-59. https://doi.org/10.1093/pcp/pch014
  60. 60. Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou H. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol. 2010;53:444-52. https://doi.org/10.1007/s12374-010-9135-6
  61. 61. Huang J, Liu F, Chao D, Xin B, Liu K, Cao S, et al. The WRKY transcription factor OsWRKY54 is involved in salt tolerance in rice. Int J Mol Sci. 2022;23(19):11999. https://doi.org/10.3390/ijms231911999
  62. 62. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol. 2008;67:169-81. https://doi.org/10.1007/s11103-008-9309-5
  63. 63. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;51(4):617-30. https://doi.org/10.1111/j.1365-313X.2007.03168.x
  64. 64. Duan J, Cai W. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One. 2012;7(9):e45117. https://doi.org/10.1371/journal.pone.0045117
  65. 65. Liu Z, Hu Y, Du A, Yu L, Fu X, Wu C, et al. Cell wall matrix polysaccharides contribute to salt-alkali tolerance in rice. Int J Mol Sci. 2022;23(23):15019. https://doi.org/10.3390/ijms232315019
  66. 66. Zhao H, Li Z, Wang Y, Wang J, Xiao M, Liu H, et al. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. Plant Biotechnol J. 2022;20(3):468-84. https://doi.org/10.1111/pbi.13729
  67. 67. Liu C, Mao B, Yuan D, Chu C, Duan M. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop J. 2022;10(1):13-25. https://doi.org/10.1016/j.cj.2021.02.010
  68. 68. Kumari S, Joshi R, Singh K, Roy S, Tripathi AK, Singh P, et al. Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct Integr Genomics. 2015;15:395-412. https://doi.org/10.1007/s10142-014-0429-5
  69. 69. Wang X, Ren P, Ji L, Zhu B, Xie G. OsVDE, a xanthophyll cycle key enzyme, mediates abscisic acid biosynthesis and negatively regulates salinity tolerance in rice. Planta. 2022;255:1-5. https://doi.org/10.1007/s00425-021-03802-1
  70. 70. Ning X, Sun Y, Wang C, Zhang W, Sun M, Hu H, et al. A rice CPYC-type glutaredoxin OsGRX20 in protection against bacterial blight, methyl viologen and salt stresses. Front Plant Sci. 2018;9:111. https://doi.org/10.3389/fpls.2018.00111
  71. 71. Liang WH, Li L, Zhang F, Liu YX, Li MM, Shi HH, et al. Effects of abiotic stress, light, phytochromes and phytohormones on the expression of OsAQP, a rice aquaporin gene. Plant Growth Regul. 2013;69(1):21-7. https://doi.org/10.1007/s10725-012-9743-x
  72. 72. Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium. 2014;56(2):81-95. https://doi.org/10.1016/j.ceca.2014.05.003
  73. 73. Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. New Phytol. 2024;244(4):1183-98. https://doi.org/10.1111/nph.20134
  74. 74. Talebi QR, Alipour H, Darvishzadeh R. Association mapping and gene ontology related to germination traits under normal conditions and salt stress in some bread wheat cultivars. Plant Produc. 2025; [Epub ahead of print]. https://doi.org/10.1016/j.bbagrm.2021.194752
  75. 75. Ye H, Du H, Tang N, Li X, Xiong L. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol. 2009;71:291-305. https://doi.org/10.1007/s11103-009-9524-8
  76. 76. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33(4):751-63. https://doi.org/10.1046/j.1365-313x.2003.01661.x
  77. 77. Wang H, Lu S, Guan X, Jiang Y, Wang B, Hua J, et al. Dehydration-responsive element binding protein 1C, 1E and 1G promote stress tolerance to chilling, heat, drought and salt in rice. Front Plant Sci. 2022;13:851731. https://doi.org/10.3389/fpls.2022.851731
  78. 78. Mukhopadhyay P, Tyagi AK. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep. 2015;5(1):9998. https://doi.org/10.1038/srep09998
  79. 79. Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, et al. Genome-wide identification of heat shock proteins (HSPs) and HSP interactors in rice: Hsp70s as a case study. BMC Genomics. 2014;15:344. https://doi.org/10.1186/1471-2164-15-344
  80. 80. Wang R, Mei Y, Xu L, Zhu X, Wang Y, Guo J, et al. Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.). Funct Integr Genomics. 2018;18:225-39. https://doi.org/10.1007/s10142-017-0587-3
  81. 81. Reza MS, Hossen MA, Harun-Or-Roshid M, Siddika MA, Kabir MH, Mollah MN. Metadata analysis to explore hub of the hub-genes highlighting their functions, pathways and regulators for cervical cancer diagnosis and therapies. Discov Oncol. 2022;13(1):79. https://doi.org/10.1007/s12672-022-00546-6
  82. 82. Makvandi N, Ghorbani A, Rostami M, Rostami A, Ghasemi-Soloklui AA. Identification of key genes involved in heat stress response in Brassica napus L.: reconstruction of gene networks, hub genes and promoter analysis. Iran J Genet Plant Breed. 2022;11(1). https://doi.org/10.30479/ijgpb.2023.18795.1340
  83. 83. Islam MA, Hossen MB, Horaira MA, Hossen MA, Kibria MK, Reza MS, et al. Exploring core genes by comparative transcriptomics analysis for early diagnosis, prognosis and therapies of colorectal cancer. Cancers. 2023;15(5):1369. https://doi.org/10.3390/cancers15051369
  84. 84. Tuly KF, Hossen MB, Islam MA, Kibria MK, Alam MS, Harun-Or-Roshid M, et al. Robust identification of differential gene expression patterns from multiple transcriptomics datasets for early diagnosis, prognosis and therapies for breast cancer. Medicina. 2023;59(10):1705. https://doi.org/10.3390/medicina59101705
  85. 85. Ghorbani A, Rostami M, Izadpanah K. Gene network modeling and pathway analysis of maize transcriptomes in response to maize Iranian mosaic virus. Genomics. 2023;115(3):110618. https://doi.org/10.1016/j.ygeno.2023.110618
  86. 86. Islam F, Khan MS, Ahmed S, Ikram AU, Hannan F, Jan M, et al. Transcriptomic reprogramming of rice cultivars in response to herbicide, salt and their combined stresses. Plant Stress. 2024;12:100504. https://doi.org/10.1016/j.stress.2024.100504
  87. 87. Mas-ud MA, Juthee SA, Hosenuzzaman M, Islam MS, Haque ME, Matin MN. Current understanding of heat shock protein-mediated responses to heat stress in rice. Environ Exp Bot. 2025;106192. https://doi.org/10.1016/j.envexpbot.2025.106192
  88. 88. Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A. 2007;104(34):13839-44. https://doi.org/10.1073/pnas.0706386104
  89. 89. Alam MJ, Alamin M, Sultana MH, Ahsan MA, Hossain MR, Islam SS, et al. Bioinformatics studies on structures, functions and diversifications of rolling leaf related genes in rice (Oryza sativa L.). Plant Genet Resour. 2020;18(5):382-95. https://doi.org/10.1017/S1479262120000404
  90. 90. Park GG, Park JJ, Yoon J, Yu SN, An G. A RING finger E3 ligase gene, Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol. 2010;74(4):467-78. https://doi.org/10.1007/s11103-010-9687-3
  91. 91. Deng P, Jing W, Cao C, Sun M, Chi W, Zhao S, et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proc Natl Acad Sci U S A. 2022;119(50):e2210338119. https://doi.org/10.1073/pnas.2210338119
  92. 92. Du F, Wang Y, Wang J, Li Y, Zhang Y, Zhao X, et al. The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance. J Integr Plant Biol. 2023;65(8):1859-73. https://doi.org/10.1111/jipb.13489
  93. 93. Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, et al. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot. 2013;86:94-105. https://doi.org/10.1016/j.envexpbot.2010.01.009
  94. 94. Tian P, Liu J, Mou C, Shi C, Zhang H, Zhao Z, et al. GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology. 2019;61(11):1171-85.

Downloads

Download data is not yet available.