Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Comparison of the protein system in early response to salinity stress of three rice varieties (Oryza sativa L.) with contrast phenotypes

DOI
https://doi.org/10.14719/pst.9049
Submitted
23 April 2025
Published
03-12-2025

Abstract

Rice (Oryza sativa L.), a staple food for over 40 % of the global population, faces significant yield losses due to salinity stress, particularly at the germination stage. This study compared early proteomic responses to NaCl stress in three Vietnamese rice varieties with contrasting tolerance: OM 9577 (salt-tolerant), OC 10 (moderately tolerant) and Dai Thom 8 (salt-sensitive). Germinating seeds were subjected to NaCl treatment and proteins were extracted for analysis by Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) and Two-Dimensional gel Electrophoresis (2-DE) combined with LC-MS/MS. In total, 160 peptide fragments corresponding to 45 differentially abundant proteins were identified, spanning 13 functional categories, including metabolism, stress response, transcriptional regulation, signal transduction, cellular transportation, cell growth, cell division and protein modification. 2-DE profiles confirmed characteristic proteins in the tolerant and moderately tolerant varieties: OC 10 exhibited three proteins associated with cellular transportation, stress response, signal transduction and transcription, while OM 9577 exhibited eight proteins related to nucleotide metabolism, transport, signal transduction, stress response, cell growth, cell division and transcriptional regulation. These proteins likely underline enhanced salt tolerance and are proposed as candidate biomarkers for molecular screening and the improvement of salt-tolerant rice via conventional breeding and gene transfer.

References

  1. 1. Musse OSH, Echchabi A, Mohamud IH, Sharif MN. Empirical assessment of climate change effect on cereal crop production in the East African Community. Discov Sustain. 2025;6:1147. https://doi.org/10.1007/s43621-025-01998-w
  2. 2. Chen T, Niu Y, Yang C, Liang Y, Xu J. Screening of rice (Oryza sativa L.) genotypes for salinity tolerance and dissecting determinants of tolerance mechanism. Plants. 2024;13(7):1036. https://doi.org/10.3390/plants13071036
  3. 3. Ghosh B, Ali MN, Saikat G. Response of rice under salinity stress: A review update. J Rice Res. 2016;4(2):167-74. https://doi.org/10.4172/2375-4338.1000167
  4. 4. Arif YS, Priyanka, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020;156:64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  5. 5. Goharrizi KJ, Hamblin MR, Karami S, Nazari M. Physiological, biochemical and metabolic responses of abiotic plant stress: salinity and drought. Turk J Bot. 2021;45(7):623-42. https://doi.org/10.3906/bot-2108-30
  6. 6. Kalita CK. Plant stress physiology-A comprehensive account. E-Zine Biol Sci. 2022:2456-7264.
  7. 7. Duong CQ, Bui AL, Le TH, Thanh TT, Ngoc TN. Differential biochemical and metabolic responses of contrast rice cultivars (Oryza sativa L.) under salt stress. Acta Agrobot. 2023;76. https://doi.org/10.5586/aa/172513
  8. 8. Hussain S, Cao X, Hong C, Zhu L, Khaskheli MA, Fiaz S, et al. Sodium chloride stress during early growth stages altered physiological and growth characteristics of rice. Chil J Agric Res. 2018;78(2):183-97. https://doi.org/10.4067/S0718-58392018000200183
  9. 9. Quoc CD, Lan AB, Nguyen NT, Le Hong T, Thanh TT, Tran G-B, et al. Variations in some metabolic compounds in the roots of rice varieties (Oryza sativa L.) with different salinity tolerance under salinity stress during the seedling stage. Plant Physiol Rep. 2024;29(3):660-77. https://doi.org/10.1007/s40502-024-00804-5
  10. 10. Huyen LTN, Cuc LM, Ham LH, Khanh TD. Introgression the Saltol QTL into Q5DB, the elite variety of Vietnam using marker-assisted selection (MAS). Am J BioSci. 2013;1(4):80-4. https://doi.org/10.11648/j.ajbio.20130104.15
  11. 11. Duong CQ, Bui AL, Trinh NN, Le TH, Tran TT, Tran G-B. Evaluation of some biochemical and biomolecular indicators in rice (Oryza sativa L.) during the seedling stage under NaCl stress. J Crop Sci Biotechnol. 2024:1-18. https://doi.org/10.2139/ssrn.4570825
  12. 12. Barkla BJ, Castellanos-Cervantes T, León JLDd, Matros A, Mock H-P, Perez-Alfocea F, et al. Elucidation of salt stress defence and tolerance mechanisms of crop plants using proteomics - current achievements and perspectives. Proteomics. 2013;13(12-13):1885-900. https://doi.org/10.1002/pmic.201200399
  13. 13. Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep. 2012;39:6387-97. https://doi.org/10.1007/s11033-012-1460-z
  14. 14. Passamani L, Barbosa RR, Reis RS, Heringer AS, Rangel PL, Santa-Catarina C, et al. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PLoS One. 2017;12(4):e0176076. https://doi.org/10.1371/journal.pone.0176076
  15. 15. Rotilio D, Della Corte A, D'Imperio M, Coletta W, Marcone S, Silvestri C, et al. Proteomics: bases for protein complexity understanding. Thromb Res. 2012;129(3):257-62. https://doi.org/10.1016/j.thromres.2011.12.035
  16. 16. Frukh A, Siddiqi TO, Khan MIR, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol Biochem. 2020;146:55-70. https://doi.org/10.1016/j.plaphy.2019.11.011
  17. 17. Liu C-W, Chang T-S, Hsu Y-K, Wang AZ, Yen H-C, Wu Y-P, et al. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics. 2014;14(15):1759-75. https://doi.org/10.1002/pmic.201300276
  18. 18. Wang F, Yang YSL, Zhu C. Comparative proteomic study and functional analysis of translationally controlled tumour protein in rice roots under Hg2+ stress. J Environ Sci. 2012;24(12):2149-58. https://doi.org/10.1016/S1001-0742(11)61062-0
  19. 19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. https://doi.org/10.1016/S0021-9258(19)52451-6
  20. 20. Ngoc NT, Tri PN, Le Hong T, Quoc CD. Biomolecular evaluation of three contrasting rice cultivars (Oryza sativa L.) in salt stress response at seedling stage. Plant Sci. Today. 2022;9:491-503. https://doi.org/10.14719/pst.1539
  21. 21. Dang TT, Tran TTT, Tran G-H, Pham SH, Nguyen TH. Cyclotides derived from Viola dalatensis Gagnep: A novel approach for enrichment and evaluation of antimicrobial activity. Toxicon. 2024;239:107606. https://doi.org/10.1016/j.toxicon.2024.107606
  22. 22. Ahn SH, Yang H-Y, Tran GB, Kwon J, Son K-Y, Kim S, et al. Interaction of peroxiredoxin V with dihydrolipoamide branched chain transacylase E2 in mouse kidney under hypoxia. Proteome Sci. 2015;13:1-9. https://doi.org/10.1186/s12953-014-0061-2
  23. 23. Liu Y, Wang B, Li J, Song Z-L, Chi M-Y, Liu J, et al. Salt-response analysis in two rice cultivars at seedling stage. Acta Physiol Plant. 2017;39:1-9. https://doi.org/10.1007/s11738-017-2514-6
  24. 24. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651-81. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  25. 25. Padilla-Chacón D, Campos-Patiño L, Peña-Valdivia CB, García-Esteva A, Jiménez-Galindo JC, Pizeno-García JL. Proteomic profile of tepary bean seed storage proteins in germination with low water potential. Proteome Sci. 2024;22(1):1. https://doi.org/10.1186/s12953-023-00225-6
  26. 26. Wang D, Li J, Li S, Fu J, Liu B, Cao D. Multi-omics analysis of hexaploid triticale that show molecular responses to salt stress during seed germination. Front Plant Sci. 2025;15:1529961. https://doi.org/10.3389/fpls.2024.1529961
  27. 27. Natera SH, Ford KL, Cassin AM, Patterson JH, Newbigin EJ, Bacic A. Analysis of the Oryza sativa plasma membrane proteome using combined protein and peptide fractionation approaches in conjunction with mass spectrometry. J Proteome Res. 2008;7(3):1159-87. https://doi.org/10.1021/pr070255c
  28. 28. Chompa SS, Zuan ATK, Amin AM, Hun TG, Ghazali AHA, Sadeq BMA, et al. Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions. Int Microbiol. 2024;27(4):1151-68. https://doi.org/10.1007/s10123-023-00469-4
  29. 29. Ruan S, Xiao W, Qiu J, Hu W, Ying WC, Tong J, et al. Proteomic analysis of 2-chloroethanol extracts of rice (Oryza sativa L.) seeds. Food Chem Mol Sci. 2020;1:100002. https://doi.org/10.1016/j.fochms.2020.100002
  30. 30. Wang Q. The role of forkhead-associated (FHA) domain proteins in plant biology. Plant Mol Biol. 2023;111(6):455-72. https://doi.org/10.1007/s11103-023-01338-4
  31. 31. Shi F, Liu Z, Pang Z, Feng H. The role of the FHA domain-containing protein family in pollen development of Brassica rapa L. Sci Hortic. 2021;288:110339. https://doi.org/10.1016/j.scienta.2021.110339
  32. 32. Zhang C-J, Zhao B-C, Ge W-N, Zhang Y-F, Song Y, Sun D-Y, et al. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol. 2011;157(4):1884-99. https://doi.org/10.1104/pp.111.182808
  33. 33. Japelaghi RH, Haddad R, Ghasem-Ali M. Molecular characterization of an h-type thioredoxin gene from grape. Open Life Sci. 2011;6(6):1006-22. https://doi.org/10.2478/s11535-011-0051-7
  34. 34. Boubakri H, Saidi MN, Barhoumi F, Hanen J, Moez B, Faiçal B. Identification and characterization of thioredoxin h-type gene family in Triticum turgidum ssp. durum in response to natural and environmental factor-induced oxidative stress. Plant Mol Biol Rep. 2019;37:464-76. https://doi.org/10.1007/s11105-019-01176-z
  35. 35. Lin L, Wu J, Jiang M, Wang Y. Plant mitogen-activated protein kinase cascades in environmental stresses. Int J Mol Sci. 2021;22(4):1543. https://doi.org/10.3390/ijms22041543
  36. 36. Yang A, Dai X, Zhang W-H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold and dehydration tolerance in rice. J Exp Bot. 2012;63(7):2541-56. https://doi.org/10.1093/jxb/err431
  37. 37. Zhang H-C, Gong Y-H, Tao TL, Zhou W-Y, Xia HZ, Yang Q-Q, et al. Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.). BMC Genomics. 2024;25(1):797. https://doi.org/10.1186/s12864-024-10693-5
  38. 38. Nie S, Huang W, He C, Wu B, Duan H, Ruan J, et al. Transcription factor OsMYB2 triggers amino acid transporter OsANT1 expression to regulate rice growth and salt tolerance. Plant Physiol. 2025;197(2):kiae559. https://doi.org/10.1093/plphys/kiae559
  39. 39. Qi P, Lin Y-S, Sun X-J, Huang J-B, Wei S, Zhang J-X, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 2012;22(12):1666-80. https://doi.org/10.1038/cr.2012.151
  40. 40. Guo Y, You Y, Chen F, Liao Y. Identification of the histone acetyltransferase gene family in the Artemisia annua genome. Front Plant Sci. 2024;15:1389958. https://doi.org/10.3389/fpls.2024.1389958
  41. 41. Hou J, Ren R, Xiao, Huangzhuo C, Zhenfei Y, Jinfu Z, et al. Characteristic and evolution of HAT and HDAC genes in gramineae genomes and their expression analysis under diverse stress in Oryza sativa. Planta. 2021;253:1-22. https://doi.org/10.1007/s00425-021-03589-1
  42. 42. Xia L, Luo M, Zhang W, Zhao J, Zhang J, Wu K, et al. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 2012;12:1-17. https://doi.org/10.1186/1471-2229-12-145
  43. 43. Brew-Appiah RATY, Zara BK, Vandhana R, Eric HS, A K Sanguinet. Genome-wide identification and analysis of the alternative oxidase gene family in diploid and hexaploid wheat. PLoS One. 2018;13(8):e0201439. https://doi.org/10.1371/journal.pone.0201439
  44. 44. Gunji S, Kawade K, Tabeta H, Horiguchi G, Oikawa A, Asaoka M, et al. Tissue-targeted inorganic pyrophosphate hydrolysis in a fugu5 mutant reveals that excess inorganic pyrophosphate triggers developmental defects in a cell-autonomous manner. Front Plant Sci. 2022;13:945225. https://doi.org/10.3389/fpls.2022.945225
  45. 45. Grzechowiak M, Ruszkowski M, Sliwiak J, Szpotkowski K, Sikorski M, Jaskolski M. Crystal structures of plant inorganic pyrophosphatase, an enzyme with a moonlighting autoproteolytic activity. Biochem J. 2019;476(16):2297-319. https://doi.org/10.1042/BCJ20190427
  46. 46. Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics. 2010;11:1-18. https://doi.org/10.1186/1471-2164-11-435
  47. 47. Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: what do we know about their mechanism of action? FEBS J. 2021;288(3):756-85. https://doi.org/10.1111/febs.15454
  48. 48. Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C. Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci. 2007;12(4):169-76. https://doi.org/10.1016/j.tplants.2007.03.003

Downloads

Download data is not yet available.