Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Biochemical constituents and health-promoting properties of garden pea (Pisum sativum L.) - A review

DOI
https://doi.org/10.14719/pst.9072
Submitted
24 April 2025
Published
06-01-2026

Abstract

Pulses, including peas, have long been essential to the human diet due to their high carbohydrate, protein and other nutrient content. Recently, there has been a lot of interest in pulse consumption's health benefits beyond nutrition. The systematic review focuses on the established and potential health benefits of eating peas, Pisum sativum L. and specifically green and yellow cotyledon dry peas, often known as smooth peas or field peas. Thus, the review regarding biochemical composition, nutritional aspects and health advantages of pea will be beneficial for new researchers. The outer pod comprises around 35-40 % of the pea's weight. Globally, considerable amounts of pea residue are generated, the vast majority of which is used as animal feed. Pea pods not only offer an appropriate quality of dietary fibre, but also supply a significant amount of proteins, carbohydrates and minerals. The pea pods contain significant amounts of polyphenols, including phenolic acids such as 5-caffeoylquinic acid and flavanols such as catechin and epicatechin. Pea pods provide pharmacological advantages, including antidiabetic, hepatoprotective, Reno protective, reproductive-protective, antimicrobial and α-amylase inhibitory action. The trend towards a healthier lifestyle has raised concerns about a fibre-rich diet. The review concludes that pea pods have the potential for usage in the bakery and ready-to-eat product industries. When pea pod powder is added to food products, it has been shown to improve nutritional value and structural integrity. Additionally, suggestions for improving pea use are given in order to support the grain's growth into a useful and sustainable crop. Peas and their constituent parts can be improved further to provide more value and nourishing food materials. This study summarises the relevant literature and available data on the nutritional profile, pharmacological advantages and application in functional meals. Pea pods' prospective applications outside of the food industry have also been detailed. Despite extensive studies on the nutritional profile of garden peas, comprehensive evaluations linking specific biochemical constituents to their health-promoting effects remain limited. Further research is needed to identify bioactive compounds and elucidate their mechanisms for functional food and nutraceutical applications.

References

  1. 1. Food and Agriculture Organisation. FAOSTAT. Rome: Food and Agriculture Organisation; 2019. http://www.fao.org/faostat/en/#data/QC
  2. 2. Mondor M. Pea. In: Manickavasagan A, Thirunathan P, editors. Pulses. Cham: Springer; 2020. p. 245-73. https://doi.org/10.1007/978-3-030-41376-7_14
  3. 3. Senapati AK, Varshney AK, Sharma KV. Dehydration of green peas: A review. Int J Chem Stud. 2019;7(2):1088-91.
  4. 4. Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (Pisum sativum L.). Br J Nutr. 2012;108:S3-10. https://doi.org/10.1017/S0007114512000852
  5. 5. Santos CS, Carbas B, Castanho A, Vasconcelos MW, Vaz Patto MC, Domoney C et al. Variation in pea (Pisum sativum L.) seed quality traits defined by physicochemical functional properties. Foods. 2019;8(11):570. https://doi.org/10.3390/foods8110570
  6. 6. Millar KA, Gallagher E, Burke R, McCarthy S, Barry-Ryan C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum L.) flour. J Food Compos Anal. 2019;82:103233. https://doi.org/10.1016/j.jfca.2019.103233
  7. 7. Hood-Niefer SD, Warkentin TD, Chibbar RN, Vandenberg A, Tyler RT. Effect of genotype and environment on starch and protein concentration and physicochemical properties of starch from field pea and fababean. J Sci Food Agric. 2012;92(1):141-50. https://doi.org/10.1002/jsfa.4552
  8. 8. Reichert RD, MacKenzie SL. Composition of peas (Pisum sativum) varying widely in protein content. J Agric Food Chem. 1982;30(2):312-7. https://doi.org/10.1021/jf00110a024
  9. 9. Thakur V, Sharma P, Kumar P, Sharma P, Bhat SA, Sharma S et al. Quantifying impact of fermented liquid bioformulations, biofertilizers and organic amendments on horticultural and soil nutrient traits of garden pea (Pisum sativum L.). Int J Recycl Org Waste Agric. 2024;13(3):1-7.
  10. 10. Lu ZX, He JF, Zhang YC, Bing DJ. Composition and physicochemical properties of pea protein and its application in functional foods. Crit Rev Food Sci Nutr. 2020;60(15):2593-605. https://doi.org/10.1080/10408398.2019.1651248
  11. 11. He X, Chen J, He X, Feng Z, Li C, Liu W et al. Industry scale microfluidization to improve solubility and modify structure of pea protein. Innov Food Sci Emerg Technol. 2020;67:102582. https://doi.org/10.1016/j.ifset.2020.102582
  12. 12. Thakur V, Sharma P, Sharma P, Sharma S. Efficacy of biological waste on cropping traits and nutrient status of soil in garden pea under protected environment. Environ Eng Manage J. 2023;22(12):1995-2002. https://doi.org/10.30638/eemj.2023.172
  13. 13. Belghith-Fendri L, Chaari F, Jeddou KB, Kallel F, Bouaziz F, Helbert CB et al. Polysaccharides extracted from pea pod by-products: identification and evaluation of biological and functional properties. Int J Biol Macromol. 2018;116:947-54. https://doi.org/10.1016/j.ijbiomac.2018.05.095
  14. 14. Tosh SM, Farnworth ER, Brummer Y, Duncan AM, Wright AJ, Boye JI et al. Nutritional profile and carbohydrate characterization of spray-dried lentil, pea and chickpea ingredients. Foods. 2013;2(3):338-49. https://doi.org/10.3390/foods2030338
  15. 15. Englyst HN, Quigley ME, Hudson GJ, Cummings JH. Determination of dietary fibre as non-starch polysaccharides by gas-liquid chromatography. Analyst. 1992;117(11):1707-14. https://doi.org/10.1039/AN9921701707
  16. 16. Singh B, Singh JP, Shevkani K, Singh N, Kaur A. Bioactive constituents in pulses and their health benefits. J Food Sci Technol. 2017;54(4):858-70. https://doi.org/10.1007/s13197-016-2391-9
  17. 17. Guillon F, Champ MM. Carbohydrate fractions of pea: uses in human nutrition and potential for health. Br J Nutr. 2002;88(S3):S293-306. https://doi.org/10.1079/BJN2002720
  18. 18. Chung HJ, Liu Q, Hoover R. Effect of hydrothermal treatments on crystalline structure, thermal properties and nutritional fractions of pea, lentil and navy bean starches. Food Res Int. 2010;43(2):501-8. https://doi.org/10.1016/j.foodres.2009.07.030
  19. 19. Petropoulou K, Salt LJ, Edwards CH, Warren FJ, Garcia-Perez I, Chambers ES, Frost GS. A natural mutation in Pisum sativum L. alters starch assembly and improves glucose homeostasis in humans. Nature Food. 2020;1(11):693-704. https://doi.org/10.1038/s43016-020-00159-8
  20. 20. Owusu-Ansah YJ, McCurdy SM. Pea proteins: chemistry, production technology and utilization. Food Rev Int. 1991;7(1):103-34. https://doi.org/10.1080/87559129109540903
  21. 21. Yi J, Gan C, Wen Z, Fan Y, Wu X. Pea protein-pectin colloidal particles for high internal phase pickering emulsions for β-carotene protection. Food Hydrocoll. 2021;113:106497. https://doi.org/10.1016/j.foodhyd.2020.106497
  22. 22. Muneer F, Johansson E, Hedenqvist MS, Plivelic TS, Markedal KE, Petersen IL et al. Protein and fibre rich fractions of yellow pea (Pisum sativum L.) and their impact on mechanical properties of pasta-like sheets. Food Res Int. 2018;106:607-18. https://doi.org/10.1016/j.foodres.2018.01.020
  23. 23. Borderías AJ, Tovar CA, Domínguez-Timón F, Díaz MT, Pedrosa MM, Moreno HM. Mixed surimi gels with pea protein isolates. Food Hydrocoll. 2020;107:105976. https://doi.org/10.1016/j.foodhyd.2020.105976
  24. 24. El Youssef C, Bonnarme P, Fraud S, Péron AC, Helinck S, Landaud S. Sensory improvement of a pea protein-based product using microbial co-cultures. Foods. 2020;9(3):349. https://doi.org/10.3390/foods9030349
  25. 25. Gawalko E, Garrett RG, Warkentin T, Wang N, Richter A. Trace elements in Canadian field peas. Food Addit Contam. 2009;26(7):1002-12. https://doi.org/10.1080/02652030902894389
  26. 26. Robinson GHJ, Balk J, Domoney C. Improving pulse crops as sources of protein, starch and micronutrients. Nutr Bull. 2019;44(3):202-15. https://doi.org/10.1111/nbu.12399
  27. 27. Boschin G, Arnoldi A. Legumes as sources of tocopherols. Food Chem. 2011;127(3):1199-203. https://doi.org/10.1016/j.foodchem.2011.01.124
  28. 28. Mejri F, Khoud HB, Njim L, Baati T, Selmi S, Martins A, Hosni K. In vitro and in vivo biological properties of pea pods (Pisum sativum L.). Food Biosci. 2019;32:100482. https://doi.org/10.1016/j.fbio.2019.100482
  29. 29. Han JY, Tyler RT. Determination of folate concentrations in pulses using a microbiological method with trienzyme extraction. J Agric Food Chem. 2003;51(18):5315-8. https://doi.org/10.1021/jf0211027
  30. 30. Jha AB, Warkentin TD. Biofortification of pulse crops: status and future perspectives. Plants. 2020;9(1):73. https://doi.org/10.3390/plants9010073
  31. 31. Amarakoon D, McPhee K, Thavarajah P. Iron-, zinc- and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid. J Food Compos Anal. 2012;27(1):8-13. https://doi.org/10.1016/j.jfca.2012.05.007
  32. 32. Poblaciones MJ, Rengel Z. Soil and foliar zinc biofortification in field pea (Pisum sativum L.). Food Chem. 2016;212:427-33. https://doi.org/10.1016/j.foodchem.2016.05.189
  33. 33. Rehman HM, Cooper JW, Lam HM, Yang SH. Legume biofortification for combating hidden hunger. Plant Cell Environ. 2019;42(1):52-70. https://doi.org/10.1111/pce.13368
  34. 34. Powers SE, Thavarajah D. Field pea (Pisum sativum L.), sustainability and phosphorus use efficiency. Front Plant Sci. 2019;10:1489. https://doi.org/10.3389/fpls.2019.01489
  35. 35. Hanan E, Rudra SG, Sagar VR, Sharma V. Utilization of pea pod powder for instant pea soup formulation. J Food Process Preserv. 2020;44(11):e14888. https://doi.org/10.1111/jfpp.14888
  36. 36. Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ, Zapata-Revilla MA, Tenorio-Sanz MD. Pea pod, broad bean pod and okara as functional compound sources. LWT Food Sci Technol. 2010;43(9):1467-70. https://doi.org/10.1016/j.lwt.2010.05.008
  37. 37. Champ MMJ. Non-nutrient bioactive substances of pulses. Br J Nutr. 2002;88(S3):307-19. https://doi.org/10.1079/BJN2002721
  38. 38. Dalgetty DD, Baik BK. Isolation and characterization of cotyledon fibers from peas, lentils and chickpeas. Cereal Chem. 2003;80(3):310-5. https://doi.org/10.1094/CCHEM.2003.80.3.310
  39. 39. Maphosa Y, Jideani VA. Dietary fiber extraction for human nutrition. Food Rev Int. 2016;32(1):98-115. https://doi.org/10.1080/87559129.2015.1057840
  40. 40. Tosh SM, Yada S. Dietary fibres in pulses: characterization and functional attributes. Food Res Int. 2010;43(2):450-60. https://doi.org/10.1016/j.foodres.2009.09.005
  41. 41. Hall C, Hillen C, Garden Robinson J. Composition, nutritional value and health benefits of pulses. Cereal Chem. 2017;94(1):11-31. https://doi.org/10.1094/CCHEM-03-16-0069-FI
  42. 42. Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ. Fibre-rich ingredients from broad bean and pea by-products. J Sci Food Agric. 2012;92(3):697-703. https://doi.org/10.1002/jsfa.4633
  43. 43. Belghith-Fendri L, Chaari F, Kallel F, Zouari-Ellouzi S, Ghorbel R, Besbes S et al. Pea and broad bean pods as dietary fiber sources: effects on cake texture and sensory properties. J Food Sci. 2016;81(10):C2360-6. https://doi.org/10.1111/1750-3841.13448
  44. 44. Tapasya K, Sankar Chandra D. Potential health benefits of garden pea seeds and pods: a review. Legume Sci. 2021;3:e82. https://doi.org/10.1002/leg3.82
  45. 45. Roberfroid M, Slavin J. Nondigestible oligosaccharides. Crit Rev Food Sci Nutr. 2000;40(6):461-80. https://doi.org/10.1080/10408690091189239
  46. 46. Slavin J. Impact of proposed dietary fiber definition on nutrient databases. J Food Compos Anal. 2003;16(3):287-91. https://doi.org/10.1016/S0889-1575(03)00053-X
  47. 47. Bush RS, Jenkin RD, Allt WE, Beale FA, Bean H, Dembo AJ et al. Hypoxic cells influencing cure in cancer therapy. Br J Cancer Suppl. 1978;3:302.
  48. 48. Khan AR, Alam S, Ali S, Bibi S, Khalil IA. Dietary fiber profile of food legumes. Sarhad J Agric. 2007;23(3):763.
  49. 49. Dhingra D, Michael M, Rajput H, Patil RT. Dietary fibre in foods: a review. J Food Sci Technol. 2012;49(3):255-66. https://doi.org/10.1007/s13197-011-0365-5
  50. 50. Sun J, Zhang Z, Xiao F, Wei Q, Jing Z. Ultrasound-assisted alkali extraction of insoluble dietary fiber from soybean residues. Mater Sci Eng. 2018;392(5):052005. https://doi.org/10.1088/1757-899X/392/5/052005
  51. 51. Hu H, Zhao Q. Extraction and functional properties of soluble dietary fibre from pineapple pomace. RSC Adv. 2018;8(72):41117-30. https://doi.org/10.1039/C8RA06928J
  52. 52. Gan RY, Wang MF, Lui WY, Wu K, Dai SH, Sui ZQ et al. Antioxidant capacity and phenolic content of 42 edible beans from China. Cereal Chem. 2017;94:291-7. https://doi.org/10.1094/CCHEM-03-16-0061-R
  53. 53. Devi J, Sanwal SK, Koley TK, Mishra GP, Karmakar P, Singh PM et al. Phenolics and antioxidant activities among garden pea (Pisum sativum L.) genotypes. Sci Hortic. 2019;244:141-50. https://doi.org/10.1016/j.scienta.2018.09.048
  54. 54. Zhao T, Su W, Qin Y, Wang L, Kang Y. Phenotypic diversity and antioxidant activity in pea (Pisum sativum L.) seeds. Cienc Rural. 2020;50(5):e20190196. https://doi.org/10.1590/0103-8478cr20190196
  55. 55. Ma Y, Gao J, Wei Z, Shahidi F. Effect of in vitro digestion on phenolics and antioxidant activity of red and yellow pea hulls. Food Chem. 2021;337:127606. https://doi.org/10.1016/j.foodchem.2020.127606
  56. 56. Borges-Martinez E, Gallardo-Velazquez T, Cardador-Martinez A, Moguel-Concha D, Osorio-Revilla G, Ruiz-Ruiz JC et al. Phenolic profile and antioxidant activity of pea (Pisum sativum L.) and black bean (Phaseolus vulgaris L.) sprouts. Food Sci Technol. 2022;42:e45920. https://doi.org/10.1590/fst.45920
  57. 57. Fahim JR, Attia EZ, Kamel MS. Phenolic profile of pea (Pisum sativum): overview. Phytochem Rev. 2019;18(1):173-98. https://doi.org/10.1007/s11101-018-9586-9
  58. 58. Castaldo L, Izzo L, Gaspari A, Lombardi S, Rodriguez-Carrasco Y, Narvaez A, Grosso M. Chemical composition of green pea (Pisum sativum L.) pod extracts and potential nutraceutical use. Antioxidants. 2022;11:105. https://doi.org/10.3390/antiox11010105
  59. 59. Abdelghffar EA, Obaid WA, Elgamal AM, Daoud R, Sobeh M, El Rae MA. Pea (Pisum sativum) peel extract attenuates Dox-induced oxidative myocardial injury. Biomed Pharmacother. 2021;143:112120. https://doi.org/10.1016/j.biopha.2021.112120
  60. 60. Guo FH, Tsao R, Li CY, Wang XY, Zhang H, Jiang L, et al. Green pea (Pisum sativum L.) hull polyphenol extracts ameliorate DSS-induced colitis through Keap1/Nrf2 pathway and gut microbiota modulation. Foods. 2021;10:2765. https://doi.org/10.3390/foods10112765
  61. 61. Jha AB, Purves RW, Elessawy FM, Zhang H, Vandenberg A, Warkentin TD. Polyphenolic profile of seed components of white and purple flower pea lines. Crop Sci. 2019;59:2711-19. https://doi.org/10.2135/cropsci2019.04.0279
  62. 62. Chahbani A, Fakhfakh N, Balti MA, Mabrouk M, El-Hatmi H, Zouari N. Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L.). Food Biosci. 2018;25:32-8. https://doi.org/10.1016/j.fbio.2018.07.004
  63. 63. Elessawy FM, Bazghaleh N, Vandenberg A, Purves RW. Polyphenol profile comparisons of seed coats of five pulse crops using a semi-quantitative liquid chromatography-mass spectrometric method. Phytochem Anal. 2020;31:458-71. https://doi.org/10.1002/pca.2909
  64. 64. Guo FH, Tsao R, Wang XY, Jiang L, Sun Y, Xiong H. Phenolics of yellow pea (Pisum sativum L.) hulls, their plasma and urinary metabolites, organ distribution and in vivo antioxidant activities. J Agric Food Chem. 2021;69:5013-25. https://doi.org/10.1021/acs.jafc.1c00713
  65. 65. Carpentier J, Conforto E, Chaigneau C, Vendeville JE, Maugard T. Microencapsulation and controlled release of alpha-tocopherol by complex coacervation between pea protein and tragacanth gum. Innov Food Sci Emerg Technol. 2022;77:102951. https://doi.org/10.1016/j.ifset.2022.102951
  66. 66. Nazir N, Nisar M, Ahmad S, Wadood SF, Jan T, Zahoor M, et al. Characterization of phenolic compounds in two novel lines of Pisum sativum L. along with their in vitro antioxidant potential. Environ Sci Pollut Res. 2020;27:7639-46. https://doi.org/10.1007/s11356-019-07065-y
  67. 67. Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A comprehensive review of pea (Pisum sativum L.): Chemical composition, processing, health benefits and food applications. Foods. 2023;12:2527. https://doi.org/10.3390/foods12132527
  68. 68. Ge J, Sun CX, Corke H, Gul K, Gan RY, Fang YP. The health benefits, functional properties, modifications and applications of pea (Pisum sativum L.) protein. Compr Rev Food Sci Food Saf. 2020;19:1835-76. https://doi.org/10.1111/1541-4337.12573
  69. 69. Guo F, Xiong H, Wang X, Jiang L, Yu N, Hu Z, et al. Phenolics of green pea (Pisum sativum L.) hulls, their plasma and urinary metabolites, bioavailability and in vivo antioxidant activities in a rat model. J Agric Food Chem. 2019;67:11955-68. https://doi.org/10.1021/acs.jafc.9b04501
  70. 70. Bello OA, Ayanda OI, Aworunse OS, Olukanmi BI, Soladoye MO, Esan EB, et al. Solaneciobia frae: An underutilized nutraceutically important African indigenous vegetable. Phcog Rev. 2018;12:128-32. https://doi.org/10.4103/phrev.phrev_43_17
  71. 71. Tassoni A, Tedeschi T, Zurlini C, Cigognini IM, Petrusan JI, Rodríguez Ó, et al. State-of-the-art production chains for peas, beans and chickpeas-valorization of agro-industrial residues. Molecules. 2020;25:1383. https://doi.org/10.3390/molecules25061383
  72. 72. Sies H. Oxidative stress: Oxidants and antioxidants. Exp Physiol. 1997;82:291-5. https://doi.org/10.1113/expphysiol.1997.sp004024
  73. 73. Halliwell B, Gutteridge JM. Lipid peroxidation in brain homogenates: role of iron and hydroxyl radicals. J Neurochem. 1997;69:1330. https://doi.org/10.1046/j.1471-4159.1997.69031330.x
  74. 74. Troszynska A, Ciska E. Phenolic compounds of seed coats of pea (Pisum sativum L.) varieties and their antioxidant activity. Czech J Food Sci. 2002;20:15-22. https://doi.org/10.17221/3504-CJFS
  75. 75. Duenas M, Estrella I, Hernandez T. Occurrence of phenolic compounds in the seed coat and cotyledon of peas (Pisum sativum L.). Eur Food Res Technol. 2004;219:116-23. https://doi.org/10.1007/s00217-004-0938-x
  76. 76. Pinchao-Pinchao YA, Ordoñez-Santos LE, Osorio-Mora O. Ultrasound-assisted extraction of phenolic compounds from pea pod. DYNA. 2019;86:211-15. https://doi.org/10.15446/dyna.v86n210.72880
  77. 77. Xu BJ, Yuan SH, Chang SKC. Comparative analyses of phenolic composition, antioxidant capacity and color of cool-season legumes. J Food Sci. 2007;72:S167-72. https://doi.org/10.1111/j.1750-3841.2006.00261.x
  78. 78. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13:572-84. https://doi.org/10.1016/S0955-2863(02)00208-5
  79. 79. Burguieres E, Mccue P, Kwon YI, Shetty K. Health-related functionality of phenolic-enriched pea sprouts. J Food Biochem. 2008;32:3-14. https://doi.org/10.1111/j.1745-4514.2007.00164.x
  80. 80. Jalili-Safaryan M, Ganjloo A, Bimakr M, Zarringhalami S. Ultrasound-assisted extraction and antioxidant activity of polysaccharides from green pea pods. Foods. 2016;5:78. https://doi.org/10.3390/foods5040078
  81. 81. Ganzon-Naret ES. Effect of processing methods on nutritional composition and antinutritional factors in Pisum sativum. ABAH Bioflux. 2018;10:18-26.
  82. 82. Guo FH, Tsao R, Li CY, Wang XY, Zhang H, Jiang L, et al. Polyphenol content of green pea (Pisum sativum L.) hull under in vitro digestion. J Agric Food Chem. 2022;70:3477-88. https://doi.org/10.1021/acs.jafc.2c00102
  83. 83. Urbano G, Aranda P, Gómez-Villalva E, Frejnagel S, Porres JM, Frías J, et al. Nutritional evaluation of pea (Pisum sativum L.) protein diets. J Agric Food Chem. 2003;51:2415-20. https://doi.org/10.1021/jf0209239
  84. 84. Roy F, Boye JI, Simpson BK. Bioactive proteins and peptides in pulse crops. Food Res Int. 2010;43:432-42. https://doi.org/10.1016/j.foodres.2009.09.002
  85. 85. Costantini M, Summo C, Centrone M, Rybicka I, D’agostino M, Annicchiarico P, et al. Macro- and micro-nutrient composition of chickpea and pea accessions. Pol J Food Nutr Sci. 2021;71:177-85. https://doi.org/10.31883/pjfns/135813
  86. 86. Ashokkumar K, Diapari M, Jha AB, Tar’an B, Arganosa G, Warkentin TD. Carotenoid diversity in pea and chickpea accessions. J Food Compos Anal. 2015;43:49-60. https://doi.org/10.1016/j.jfca.2015.04.014
  87. 87. Zhang SJ, Hu TT, Chen YY, Wang S, Kang YF. Polysaccharide fractions isolated from pea (Pisum sativum L.). J Food Biochem. 2020;44:e13248. https://doi.org/10.1111/jfbc.13248
  88. 88. Dominika Ś, Arjan N, Karyn RP, Henryk K. Glycated pea proteins and human intestinal bacteria. Int J Food Microbiol. 2011;145:267-72. https://doi.org/10.1016/j.ijfoodmicro.2011.01.002
  89. 89. Bazzano LA. Effects of soluble dietary fiber on LDL cholesterol and coronary heart disease risk. Curr Atheroscler Rep. 2008;10:473-7. https://doi.org/10.1007/s11883-008-0074-3
  90. 90. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5:1417-35. https://doi.org/10.3390/nu5041417
  91. 91. Becerra-Tomás N, Papandreou C, Salas-Salvadó J. Legume consumption and cardiometabolic health. Adv Nutr. 2019;10:S437-50. https://doi.org/10.1093/advances/nmz003
  92. 92. Anderson JW, Major AW. Pulses and lipaemia: short- and long-term effects. Br J Nutr. 2002;88:S263-71. https://doi.org/10.1079/BJN2002716
  93. 93. Narayan S, Lakshmipriya N, Vaidya R, Bai MR, Sudha V, Krishnaswamy K, et al. Dietary fiber intake and serum cholesterol in Asian-Indian adults with type 2 diabetes. IJEM. 2014;18:624. https://doi.org/10.4103/2230-8210.139215
  94. 94. Papandreou C, Becerra-Tomás N, Bulló M, Martínez-González MA, Corella D, Estruch R, et al. Legume consumption and mortality in the PREDIMED study. Clin Nutr. 2019;38:348-56. https://doi.org/10.1016/j.clnu.2017.12.019
  95. 95. Perez-Vizcaino F, Duarte J. Flavonols and cardiovascular disease. Mol Aspects Med. 2010;31:478-94. https://doi.org/10.1016/j.mam.2010.09.002
  96. 96. Voutilainen S, Nurmi T, Mursu J, Rissanen TH. Carotenoids and cardiovascular health. Am J Clin Nutr. 2006;83:1265-71. https://doi.org/10.1093/ajcn/83.6.1265
  97. 97. Veenstra JM, Duncan AM, Cryne CN, Deschambault BR, Boye JI, Benali M, et al. Effect of pulse consumption on gastrointestinal function. Food Res Int. 2010;43:553-9. https://doi.org/10.1016/j.foodres.2009.07.029
  98. 98. Liu D, Guan X, Huang K, Li S, Liu J, Yu W, et al. Protective effects of mung bean (Vigna radiata L.) and pea (Pisum sativum L.) against oxidative stress. Food Sci Nutr. 2019;7:4063-75. https://doi.org/10.1002/fsn3.1271
  99. 99. Ndiaye F, Vuong T, Duarte J, Aluko RE, Matar C. Antioxidant and immunomodulating properties of pea seed hydrolysate. Eur J Nutr. 2012;51:29-37. https://doi.org/10.1007/s00394-011-0186-3
  100. 100. Bibi S, Moraes LFD, Lebow N, Zhu MJ. Dietary green pea protects against DSS-induced colitis in mice. Nutrients. 2017;9:509. https://doi.org/10.3390/nu9050509
  101. 101. Utrilla MP, Peinado MJ, Ruiz R, Rodriguez-Nogales A, Algieri F, Rodriguez-Cabezas ME, et al. Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect. Mol Nutr Food Res. 2015;59:807-19. https://doi.org/10.1002/mnfr.201400630
  102. 102. Aluko RE, Girgih AT, He R, Malomo S, Li H, Offengenden M, et al. Yellow field pea (Pisum sativum L.) peptide characterization. Food Res Int. 2015;77:10-16. https://doi.org/10.1016/j.foodres.2015.03.029
  103. 103. Jakubczyk A, Baraniak B. ACE inhibitory peptides after hydrolysis of pea globulins. Biomed Res Int. 2014;2014:438459. https://doi.org/10.1155/2014/438459
  104. 104. Girgih AT, Nwachukwu ID, Onuh JO, Malomo SA, Aluko RE. Antihypertensive properties of pea protein hydrolysate. J Food Sci. 2016;81:H1281-7. https://doi.org/10.1111/1750-3841.13272
  105. 105. Wang X, Bhullar KS, Fan HB, Liao W, Qiao YJ, Su D, et al. Regulatory effects of pea-derived peptide LRW. J Agric Food Chem. 2020;68:3947-53. https://doi.org/10.1021/acs.jafc.0c00028
  106. 106. Inagaki K, Nishimura Y, Iwata E, Manabe S, Goto M, Ogura Y, et al. Hypolipidemic effect of autoclaved extract from pea (Pisum sativum L.) pods. J Nutr Sci Vitaminol. 2016;62:322-9. https://doi.org/10.3177/jnsv.62.322
  107. 107. Rigamonti E, Parolini C, Marchesi M, Diani E, Brambilla S, Sirtori CR, et al. Hypolipidemic effect of dietary pea proteins. Mol Nutr Food Res. 2010;54:S24-30. https://doi.org/10.1002/mnfr.200900251
  108. 108. Ruiz R, Olias R, Clemente A, Rubio LA. Pea (Pisum sativum L.) seed vicilins hydrolysate and adipocyte differentiation. Foods. 2020;9:793. https://doi.org/10.3390/foods9060793
  109. 109. Eslinger AJ, Eller LK, Reimer RA. Yellow pea fiber improves glycemia and gut microbiota. Nutr Res. 2014;34:714-22. https://doi.org/10.1016/j.nutres.2014.07.016
  110. 110. Mayengbam S, Lambert JE, Parnell JA, Tunnicliffe JM, Nicolucci AC, Han J, et al. Dietary fiber supplementation and metabolic axes in obesity. J Nutr Biochem. 2019;64:228-36. https://doi.org/10.1016/j.jnutbio.2018.11.003
  111. 111. El-Saadony MT, El-Hack MEA, Swelum AA, Al-Sultan SI, El-Ghareeb WR, Hussein EOS, et al. Bioactive peptides of pea and kidney bean improve quality of buffalo meat. Ital J Anim Sci. 2021;20:762-76. https://doi.org/10.1080/1828051X.2021.1926346
  112. 112. El-Araby MM, El-Shatoury EH, Soliman MM, Shaaban HF. Characterization and antimicrobial activity of lectins from legume seeds. AMB Express. 2020;10:90. https://doi.org/10.1186/s13568-020-01024-4
  113. 113. Hadrich F, El Arbi M, Boukhris M, Sayadi S, Cherif S. Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities. J Oleo Sci. 2014;63:1177-83. https://doi.org/10.5650/jos.ess14107
  114. 114. Liu YP, Su YY, Yang Q, Zhou TB. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Res Ther. 2021;12:333. https://doi.org/10.1186/s13287-021-02391-w
  115. 115. Hidayat M, Prahastuti S, Yusuf M, Hasan K. Nutrition profile and potency of RGD motif in protein hydrolysate of green peas as an antifibrosis in chronic kidney disease. Iran J Basic Med Sci. 2021;24:734-43.
  116. 116. Hidayat M, Prahastuti S, Afifah E, Widowati W, Yusuf M, Hasan K. The role of green peas protein hydrolysate in TGF/Smad signaling to prevent renal fibrosis. J King Saud Univ Sci. 2022;34:101920. https://doi.org/10.1016/j.jksus.2022.101920
  117. 117. Vohra K, Dureja H, Garg V. An insight of pulses: from food to cancer treatment. J Pharmacogn Nat Prod. 2015;1(108). https://doi.org/10.4172/2472-0992.1000108
  118. 118. Rungruangmaitree R, Jiraungkoorskul W. Pea, Pisum sativum and its anticancer activity. Pharmacogn Rev. 2017;11(21):39. https://doi.org/10.4103/phrev.phrev_57_16
  119. 119. Mathers JC. Pulses and carcinogenesis: potential for the prevention of colon, breast and other cancers. Br J Nutr. 2002;88(S3):273-79. https://doi.org/10.1079/BJN2002717
  120. 120. Matscheski A, Richter DU, Hartmann AM, Effmert U, Jeschke U, Kupka MS, et al. Effects of phytoestrogen extracts isolated from rye, green and yellow pea seeds on hormone production and proliferation of trophoblast tumor cells JEG3. Horm Res Paediatr. 2006;65(6):276-88. https://doi.org/10.1159/000092591
  121. 121. Martens LG, Nilsen MM, Provan F. Pea hull fibre: novel and sustainable fibre with important health and functional properties. EC Nutr. 2017;10:139-48.
  122. 122. Arora H, Shang N, Bhullar KS, Wu JP. Pea protein-derived tripeptide LRW shows osteoblastic activity on MC3T3-E1 cells via the activation of the Akt/Runx2 pathway. Food Funct. 2020;11:7197-207. https://doi.org/10.1039/D0FO00497A
  123. 123. Stanisavljevic NS, Ilic MD, Matic IZ, Jovanovic ZS, Cupic T, Dabic DC, et al. Identification of phenolic compounds from seed coats of differently colored European varieties of pea (Pisum sativum L.) and characterization of their antioxidant and in vitro anticancer activities. Nutr Cancer. 2016;68:988-1000. https://doi.org/10.1080/01635581.2016.1190019
  124. 124. Kabir SR, Nabi MM, Haque A, Zaman RU, Mahmud ZH, Abu Reza M. Pea lectin inhibits growth of Ehrlich ascites carcinoma cells by inducing apoptosis and G2/M cell cycle arrest in vivo in mice. Phytomedicine. 2013;20:1288-96. https://doi.org/10.1016/j.phymed.2013.06.010
  125. 125. Feng T, Huang YY, Tang ZH, Wei DD, Mo JM. Anti-fatigue effects of pea (Pisum sativum L.) peptides prepared by compound protease. J Food Sci Technol. 2021;58:2265-72. https://doi.org/10.1007/s13197-020-04737-3

Downloads

Download data is not yet available.