Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Beyond the surface: Unveiling the impact of acid delinting on seed coat integrity and performance in cotton

DOI
https://doi.org/10.14719/pst.9077
Submitted
24 April 2025
Published
06-10-2025

Abstract

Delinting is widely used process aimed at removing residual lint from cotton seeds after ginning to enhance the efficiency of mechanical planting and improve germination rates. However, concerns have been raised regarding its potential impact on seed coat integrity and overall seed vigor. The seed coat serves as a crucial protective barrier that shields seeds from microbial infections, regulates water uptake during imbibition and plays a significant role in maintaining seed longevity. Damage to this protective layer can reduce germination rates, lead to abnormal seedling development and increase susceptibility to pathogens, ultimately compromising the seed quality. This review synthesizes current research on the effects of acid delinting on seed coat integrity and its implications for seed vigor. Various factors, including water absorption dynamics, electrical conductivity, seed viability and changes in mineral and metabolite composition, are analyzed to understand the extent of damage caused by delinting. Furthermore, this review examines various methodologies and testing protocols used to assess seed vigor in relation to seed coat integrity. This work aims to enhance our understanding of strategies that balance improved seed germination with the preservation of seed health. The insights from existing studies can help develop better testing methods to spot cotton seed lots with weaker seed coats. This can also support efforts to keep seeds viable during storage and ultimately improve productivity.

References

  1. 1. Bedi J, Cororation C. Cotton-textile-apparel sectors of India. Intl Food Policy Res Inst (IFPRI). IFPRI Discussion Papers; 2008.
  2. 2. Razzaq A, Zafar MM, Ali A, Hafeez A, Batool W, Shi Y, et al. Cotton germplasm improvement and progress in Pakistan. J Cotton Res. 2021;4(1):1. https://doi.org/10.1186/s42397-020-00077-x
  3. 3. Sun W, Shahrajabian MH, Khoshkharam M, Shen H, Cheng Q. Cultivation of cotton in China and Iran with considering biological activities and its health benefits. Ion Ionescu Brad” Univ Agric Sci Vet. 2020. https://doi.org/10.46909/cerce-2020-009
  4. 4. Liu Q, Llewellyn DJ, Singh SP, Green AG. Cotton seed development: opportunities to add value to a byproduct of fiber production. Cordova (TN): The Cotton Foundation; 2012. p. 131-62.
  5. 5. Jabran K, Ul‐Allah S, Chauhan BS, Bakhsh A. An introduction to global production trends and uses, history and evolution, and genetic and biotechnological improvements in cotton. In: Jabran K, Chauhan BS, editors. Cotton production. 1st edition. Wiley; 2019. p. 1-22. https://doi.org/10.1002/9781119385523.ch1
  6. 6. Worldwide cottonseed production from 2012/2013 to 2022/2023. Statista; 2024. https://www.statista.com/statistics/259489/worldwide-production-of-cottonseed/
  7. 7. Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early‐maturing cotton research. New Phytol. 2023;237(4):1100-14. https://doi.org/10.1111/nph.18611
  8. 8. Maeda AB, Wells LW, Sheehan MA, Dever JK. Stories from the greenhouse—a brief on cotton seed germination. Plants. 2021;10(12):2807. https://doi.org/10.3390/plants10122807
  9. 9. Queiroga VP, Mata M. Appropriate delinting methods for organic and conventional cotton seeds. Rev Bras Prod Agroind. 2018;20(1):83-101
  10. 10. Kalbande VH, Shinde PG. AHCL gas for cotton seed delinting. Indian Soc Agric Eng. 2009;33(3):1–6.
  11. 11. Brown AH. Effects of sulphuric-acid delinting on cotton seeds. Bot Gaz. 1933;94(4):755–70. https://doi.org/10.1086/334345
  12. 12. Bharti A, Singh M, Maurya AK. Effect of diluted sulphuric acid on delinting of cotton seeds. Ecol Environ Conserv. 2024;30:S170-5. https://doi.org/10.53550/EEC.2024.v30i07s.031
  13. 13. Holt G, Wedegaertner T, Wanjura J, Pelletier M, Delhom C, Duke S. Development and evaluation of a novel bench-top mechanical cotton seed delinter for cotton breeders. Cotton Found. 2017;21(1):18-28. https://doi.org/10.56454/JPPY1526
  14. 14. Lima JME, Carvalho ER, Moraes LFDS, Cossa NHDS, Miquicene FVC, Gradela YF. Delinting and neutralizers residue effect on stored cotton seeds physiological quality determined by phenotyping image analysis. J Seed Sci. 2023;45:e202345014. https://doi.org/10.1590/2317-1545v45267297
  15. 15. Maeda AB, Wells LW, Sheehan MA, Dever JK. Stories from the greenhouse—a brief on cotton seed germination. Plants. 2021;10(12):2807. https://doi.org/10.3390/plants10122807
  16. 16. Wu F, Yang B, Guo S, Huang W, Lei Y, Xiong S, et al. Adopting different cotton cropping systems may regulate the spatiotemporal variation in soil moisture and affect the growth, WUE and yield of cotton. Ind Crops Prod. 2022;186:115259. https://doi.org/10.1016/j.indcrop.2022.115259
  17. 17. Reeves R, Valle C. Anatomy and microchemistry of the cotton seed. Bot Gaz. 1932;93(3):259-77. https://doi.org/10.1086/334257
  18. 18. Himmelsbach DS, Akin DE, Kim J, Hardin IR. Chemical structural investigation of the cotton fiber base and associated seed coat: Fourier-transform infrared mapping and histochemistry. Text Res J. 2003;73(4):281-8. https://doi.org/10.1177/004051750307300401
  19. 19. Yan H, Hua Z, Qian G, Wang M, Du G, Chen J. Analysis of the chemical composition of cotton seed coat by Fourier-transform infrared (FT-IR) microspectroscopy. Cellulose. 2009;16(6):1099-107. https://doi.org/10.1007/s10570-009-9349-2
  20. 20. Tutushkina N, Abdullaev A, Ernazarova Z. The characterization of anatomical indices of seed coat formation of diploid and tetraploid representatives of the genus Gossypium l. J Plant Sci. 2023;11(3):86–92. https://doi.org/10.11648/j.jps.20231103.17
  21. 21. Grindley DN. Changes in composition of cottonseed during development and ripening. J Sci Food Agric. 1950;1(5):147–51. https://doi.org/10.1002/jsfa.2740010507
  22. 22. Choe EK. Cold-pad-batch bio-pretreatment of cotton woven fabrics: a case report on industrial trials. Curr Trends Fash Technol Text Eng. 2017;1(5):555573. https://doi.org/10.19080/CTFTTE.2017.01.555573
  23. 23. Renard J, Bissoli G, Planes MD, Gadea J, Naranjo MÁ, Serrano R, et al. Endosperm persistence in Arabidopsis results in seed coat fractures and loss of seed longevity. Plants. 2023;12(14):2726. https://doi.org/10.3390/plants12142726
  24. 24. Chandra S, Taak Y, Rathod DR, Yadav RR, Poonia S, Sreenivasa V, et al. Genetics and mapping of seed coat impermeability in soybean using inter-specific populations. Physiol Mol Biol Plants. 2020;26(11):2291-9. https://doi.org/10.1007/s12298-020-00906-y
  25. 25. Kebede H, Smith JR, Ray JD. Identification of a single gene for seed coat impermeability in soybean PI 594619. Theor Appl Genet. 2014;127(9):1991-2003. https://doi.org/10.1007/s00122-014-2355-2
  26. 26. Wu L, Chen S, Wang B. An allometry between seed kernel and seed coat shows greater investment in physical defense in small seeds. Am J Bot. 2019;106(3):371–6. https://doi.org/10.1002/ajb2.1245
  27. 27. Chen S, Moles AT. Factors shaping large‐scale gradients in seed physical defence: seeds are not better defended towards the tropics. Glob Ecol Biogeogr. 2018;27(4):417–28. https://doi.org/10.1111/geb.12699
  28. 28. Upretee P, Bandara MS, Tanino KK. The role of seed characteristics on water uptake preceding germination. Seeds. 2024;3(4):559–74. https://doi.org/10.3390/seeds3040040
  29. 29. Hubert B, Leprince O, Buitink J. Sleeping but not defenceless: seed dormancy and protection. J Exp Bot. 2024;75(19):6110–24. https://doi.org/10.1093/jxb/erae257
  30. 30. Fricke EC, Wright SJ. The mechanical defence advantage of small seeds. Ecol Lett. 2016;19(8):987–91. https://doi.org/10.1111/ele.12637
  31. 31. Lan Q, Xia K, Wang X, Liu J, Zhao J, Tan Y. Seed storage behaviour of 101 woody species from the tropical rainforest of southern China: a test of the seed-coat ratio–seed mass (SCR–SM) model for determination of desiccation sensitivity. Aust J Bot. 2014;62(4):305–11. https://doi.org/10.1071/BT14037
  32. 32. Prabhullachandran U, Urbánková I, Medaglia-Mata A, Creff A, Voxeur A, Petřík I, et al. Long-term high temperatures affect seed maturation and seed coat integrity in Brassica napus. Plant Biol. 2024. https://doi.org/10.1101/2024.11.27.625589
  33. 33. Kuchlan MK, Dadlani M, Samuel DVK. Seed coat properties and longevity of soybean seeds. J New Seeds. 2010;11(3):239–49. https://doi.org/10.1080/1522886X.2010.512000
  34. 34. Zhou W, Chen F, Luo X, Dai Y, Yang Y, Zheng C, et al. A matter of life and death: molecular, physiological, and environmental regulation of seed longevity. Plant Cell Environ. 2020;43(2):293–302. https://doi.org/10.1111/pce.13685
  35. 35. Fotouo-M H, Du Toit ES, Robbertse PJ. Germination and ultrastructural studies of seeds produced by a fast-growing, drought-resistant tree: implications for its domestication and seed storage. AoB Plants. 2015;7:plv016. https://doi.org/10.1093/aobpla/plv016
  36. 36. Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y, et al. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet. 2015;47(8):939–43. https://doi.org/10.1038/ng.3341
  37. 37. Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell. 2015;27(3):607–19. https://doi.org/10.1105/tpc.114.134585
  38. 38. Waterworth WM, Bray CM, West CE. The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot. 2015;66(12):3549–58. https://doi.org/10.1093/jxb/erv080
  39. 39. Fotouo-M H, Du Toit ES, Robbertse PJ. Germination and ultrastructural studies of seeds produced by a fast-growing, drought-resistant tree: implications for its domestication and seed storage. AoB Plants. 2015;7:plv016. https://doi.org/10.1093/aobpla/plv016
  40. 40. 43. Krzyzanowski FC, França-Neto JDB, Henning FA. Importance of the lignin content in the pod wall and seed coat on soybean seed physiological and health performances. J Seed Sci. 2023;45:e202345006. https://doi.org/10.1590/2317-1545v45276444
  41. 41. Ramtekey V, Cherukuri S, Kumar S, Kudekallu S, Sheoran S, Kumar UB, et al. Seed longevity in legumes: deeper insights into mechanisms and molecular perspectives. Front Plant Sci. 2022;13:918206. https://doi.org/10.3389/fpls.2022.918206
  42. 42. Borrás L, Slafer GA, Otegui ME. Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res. 2004;86(2–3):131–46. https://doi.org/10.1016/j.fcr.2003.08.002
  43. 43. Francisco FG, Usberti R. Seed health of common bean stored at constant moisture and temperature. Sci Agric. 2008;65(6):613–9. https://doi.org/10.1590/S0103-90162008000600010
  44. 44. Jain S, Joshi MA, Singh D, et al. Effect of seed coat characteristics on seed quality in soybean (Glycine max (L.) Merrill) genotypes with contrasting seed longevity traits. Legume Res Int J. 2025;48(5):787. https://doi.org/10.18805/LR-4987
  45. 45. Stipanovic RD, Williams HJ, Bell AA. Secondary products. In: Stewart JMcD, Oosterhuis DM, Heitholt JJ, Mauney JR, editors. Physiology of cotton. Dordrecht: Springer Netherlands; 2010. p. 342–52. https://doi.org/10.1007/978-90-481-3195-2_30
  46. 46. Li Y, Huang G, Lu X, Gu S, Zhang Y, Li D, et al. Research on the evolutionary history of the morphological structure of cotton seeds: a new perspective based on high-resolution micro-CT technology. Front Plant Sci. 2023;14:1219476. https://doi.org/10.3389/fpls.2023.1219476
  47. 47. Rehman A, Farooq M. Morphology, physiology and ecology of cotton. In: Jabran K, Chauhan BS, editors. Cotton production. 1st edition. Wiley; 2019. p. 23–46. https://doi.org/10.1002/9781119385523.ch2
  48. 48. Ranathunge K, Shao S, Qutob D, Gijzen M, Peterson CA, Bernards MA. Properties of the soybean seed coat cuticle change during development. Planta. 2010;231(6):1171-1188. https://doi.org/10.1007/s00425-010-1116-4
  49. 49. Luan Z, Zhao J, Shao D, Zhou D, Zhang L, Zheng W, et al. A comparison study of permeable and impermeable seed coats of legume seed crops reveals the permeability related structure difference. Pak J Bot. 2017;49(4):1435–41.
  50. 50. Maeda AB, Wells LW, Sheehan MA, Dever JK. Stories from the greenhouse—A brief on cotton seed germination. Plants. 2021;10(12):2807. https://doi.org/10.3390/plants10122807
  51. 51. Zahra LT, Qadir F, Khan MN, Kamal H, Zahra N, Ali A, et al. Seed treatment: an alternative and sustainable approach to cotton seed delinting. Front Bioeng Biotechnol. 2024;12:1376353. https://doi.org/10.3389/fbioe.2024.1376353
  52. 52. Heydari A. A comparison between acid seed delinting and fungicide seed treatment in controlling cotton seedling damping-off disease. Intl J Agri Crop Sci. 2015;8(4):573-7.
  53. 53. Oliver DB, Becker D, Hopper N, Wedegaertner T. The effect of polymer seed coatings on seed quality ratings. In: Proc. Beltwide Cotton Conference; 2003. p. 1853-8.
  54. 54. Gravanis FT, Chouliaras NA, Xifilidou S, Gougoulias N, Vagelas LK, Gemtos TA. Effect of cotton-seed acid delinting product and gin trash on soil nitrification and the possibility in disseminating cotton pathogens. Acta Hortic. 2005;(698):273–8. https://doi.org/10.17660/ActaHortic.2005.698.37
  55. 55. Atique-ur-Rehman, Kamran M, Afzal I. Production and processing of quality cotton seed. In: Ahmad S, Hasanuzzaman M, editors. Cotton production and uses. Springer Singapore; 2020. p. 547–70. https://doi.org/10.1007/978-981-15-1472-2_27
  56. 56. Nowrouzieh S, Faghani E, Roshani G. Investigating physical and physiological characteristics of Gossypium hirsutum seeds during the delinting process at factory. J Seed Res. 2024;10(2):81–98. https://doi.org/10.61186/yujs.10.2.81
  57. 57. Maeda AB, Wells LW, Sheehan MA, Dever JK. Stories from the greenhouse—a brief on cotton seed germination. Plants. 2021;10(12):2807. https://doi.org/10.3390/plants10122807
  58. 58. Tostes DPV, dos Santos HO, Januário JP, Silva JX, dos Santos Guaraldo MM, Laurindo GM, et al. Neutralization of cotton seeds after chemical delinting. Water Air Soil Pollut. 2023;234(1):16. https://doi.org/10.1007/s11270-022-06013-y
  59. 59. Lima JME, Carvalho ER, Moraes LFDS, Cossa NHDS, Miquicene FVC, Gradela YF. Delinting and neutralizers residue effect on stored cotton seeds physiological quality determined by phenotyping image analysis. J Seed Sci. 2023;45:e202345014. https://doi.org/10.1590/2317-1545v45272438
  60. 60. Meena M, Chetti M, Nawalagatti C. Seed quality behavior of soybean (Glycine max) as influenced by different packaging materials and storage conditions. Legume Res Int J. 2017;40(6):1113–8. https://doi.org/10.18805/LR-382
  61. 61. Delouche JC, Baskin CC. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci Technol. 1973;1(2):427–52.
  62. 62. Mattioni NM, Mertz LM, Barbieri APP, Haesbaert FM, Giordani W, Lopes SJ. Individual electrical conductivity test for the assessment of soybean seed germination. Semina: Cienc Agrar. 2015;36(1):31-8. https://doi.org/10.5433/1679-0359.2015v36n1p31
  63. 63. Araújo JDO, Dias DCFDS, Miranda RMD, Nascimento WM. Adjustment of the electrical conductivity test to evaluate the seed vigor of chickpea (Cicer arietinum L.). J Seed Sci. 2022;44:e202244003. https://doi.org/10.1590/2317-1545v44258677
  64. 64. Reed RC, Bradford KJ, Khanday I. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity. 2022;128(6):450–9. https://doi.org/10.1038/s41437-022-00551-7
  65. 65. International Seed Testing Association. International rules for seed testing 2024. 2024th edition. Bassersdorf (CH): ISTA; 2024.
  66. 66. International Seed Testing Association. International rules for seed testing 2015. 2015th edition. Bassersdorf (CH): ISTA; 2015.
  67. 67. Duarte CI, Martinazzo EG, Bacarin MA, Colares IG. Seed germination, growth and chlorophyll a fluorescence in young plants of Allophylus edulis in different periods of flooding. Acta Physiol Plant. 2020;42(5):80. https://doi.org/10.1007/s11738-020-03084-3
  68. 68. Barradas G, López-Bellido RJ. Seed weight, seed vigor index and field emergence in six upland cotton cultivars. J Agron. 2007;6(2):291–6.
  69. 69. Mattioni F, Albuquerque MCDFE, Marcos-Filho J, Guimarães SC. Vigor de sementes e desempenho agronômico de plantas de algodão. Rev Bras Sementes. 2012;34(1):108–16. https://doi.org/10.1590/S0101-31222012000100013
  70. 70. Shah T, Khan AZ, ur Rehman A, Akbar H, Muhammad A, Khalil S. Influence of pre-sowing seed treatments on germination properties and seedling vigor of wheat. Res Agric Vet Sci. 2017;1(1):62–70.
  71. 71. França-Neto JDB, Krzyzanowski FC. Tetrazolium: an important test for physiological seed quality evaluation. J Seed Sci. 2019;41(3):359–66. https://doi.org/10.1590/2317-1545v41n3223521
  72. 72. Finch-Savage WE, Bassel GW. Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot. 2016;67(3):567–91. https://doi.org/10.1093/jxb/erv490
  73. 73. Ramya MK. Study on morpho-nutritional diversity in grasspea (Lathyrus sativus L.) [Dissertation]. Coimbatore: Tamil Nadu Agricultural University; 2017.
  74. 74. Shahein A, Shalaby NE, Mahmoud BA. Effect of storage period and condition on cotton seed viability and its chemical composition. J Adv Agric Res. 2022;27(3):582–91. https://doi.org/10.21608/jalexu.2022.161397.1080
  75. 75. Kavitha S, Menaka C, Ananthi M. Deterioration in sesame (Sesamum indicum L.) seeds under natural and accelerated ageing. Int J Chem Stud. 2017;5(4):1141–6.
  76. 76. Delouche JC, Baskin CC. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci Technol. 1973;1:427–52.
  77. 77. Presley JT. Relation of protoplast permeability to cotton seed viability and predisposition to seedling disease. Plant Dis Rep. 1958;42:852–6.
  78. 78. Melo PAFR, Martins CC, Alves EU, Vieira RD. Development of methodology to test the electrical conductivity of Marandú grass seeds. Rev Ciênc Agron. 2019;50(1):134–41. https://doi.org/10.5935/1806-6690.20190013
  79. 79. Marques AR, Dutra AS. Methodology for the test of electrical conductivity in grain sorghum seeds. Rev Ciênc Agron. 2018;49(4):643–9.
  80. 80. Jaconis SY, Thompson AJE, Smith SL, Trimarchi C, Cottee NS, Bange MP, et al. A standardised approach for determining heat tolerance in cotton using triphenyl tetrazolium chloride. Sci Rep. 2021;11(1):5419. https://doi.org/10.1038/s41598-021-84819-5
  81. 81. Satya Srii V, Nagarajappa N, Vasudevan SN. Is seed coat structure at fault for altered permeability and imbibition injury in artificially aged soybean seeds? Crop Sci. 2022;62(4):1573–83. https://doi.org/10.1002/csc2.20679
  82. 82. Debeaujon I, Léon-Kloosterziel KM, Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000;122(2):403–14. https://doi.org/10.1104/pp.122.2.403
  83. 83. Rozina, Ahmad M, Khan AM, Abbas Q, Arfan M, Mahmood T, et al. Implication of scanning electron microscopy as a tool for identification of novel, nonedible oil seeds for biodiesel production. Microsc Res Tech. 2022;85(5):1671–84. https://doi.org/10.1002/jemt.24085
  84. 84. Wu J, Yuan Y, Niu S, Wei X, Yang J. Multiscale characterization of pore structure and connectivity of Wufeng–Longmaxi shale in Sichuan Basin, China. Mar Pet Geol. 2020;120:104514. https://doi.org/10.1016/j.marpetgeo.2020.104514
  85. 85. Roslin A, Pokrajac D, Wu K, Zhou Y. 3D pore system reconstruction using nano-scale 2D SEM images and pore size distribution analysis for intermediate rank coal matrix. Fuel. 2020;275:117934. https://doi.org/10.1016/j.fuel.2020.117934
  86. 86. Zhou J, Yin YT, Qian CM, Liao ZY, Shu Y, Li SX. Seed coat morphology in Sapium sebiferum in relation to its mechanism of water uptake. J Hortic Sci Biotechnol. 2015;90(6):613–8. https://doi.org/10.1080/14620316.2015.11513223
  87. 87. Zhu M, Dai S, Ma Q, Li S. Identification of the initial water-site and movement in Gleditsia sinensis seeds and its relation to seed coat structure. Plant Methods. 2021;17(1):55. https://doi.org/10.1186/s13007-021-00778-5
  88. 88. Jabar JM, Odusote YA, Alabi KA, Ahmed IB. Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Appl Water Sci. 2020;10(6):136. https://doi.org/10.1007/s13201-020-01222-2
  89. 89. Chinnasamy G, Sundareswaran S, Subramaniyan K, Raja K, Renganayaki P, Marimuthu S, et al. Assessment of rice (Co 51) seed ageing through volatile organic compound analysis using Headspace–Solid Phase Micro Extraction/Gas Chromatography–Mass Spectrometry (HS-SPME/GCMS). J Appl Nat Sci. 2022;14(3):850–8. https://doi.org/10.31018/jans.v14i3.3622
  90. 90. Ma L, Chen Y, Xu S, Dong R, Wang Y, Fang D, et al. Metabolic profile analysis based on GC-TOF/MS and HPLC reveals the negative correlation between catechins and fatty acids in the cottonseed of Gossypium hirsutum. J Cotton Res. 2022;5(1):17. https://doi.org/10.1186/s42397-022-00127-4
  91. 91. Hassan MI, Abdulmumin Y, Abdulmumin TM, Murtala M, Muhammad AI, Anas HU, et al. Physico-chemical and GC–MS analysis of Gossypium hirsutum (cotton seed) oil. J Appl Life Sci Int. 2022;25(3):25–39. https://doi.org/10.9734/jalsi/2022/v25i330290
  92. 92. Seal S, Panda AK, Kumar S, Singh RK. Production and characterization of bio-oil from cotton seed: Sustainability section. Environ Prog Sustain Energy. 2015;34(2):542–7. https://doi.org/10.1002/ep.12032
  93. 93. Rui Y, Shen J, Zhang F. Application of ICP–MS to determination of heavy metal content in two kinds of N fertilizer. Spectrosc Spectr Anal. 2008;28(10):2425–7.
  94. 94. Pessôa GDS, Lopes Júnior CA, Madrid KC, Arruda MAZ. A quantitative approach for Cd, Cu, Fe and Mn through laser ablation imaging for evaluating the translocation and accumulation of metals in sunflower seeds. Talanta. 2017;167:317–24. https://doi.org/10.1016/j.talanta.2017.02.008
  95. 95. Choi YH, Hong CK, Kim M, Jung SO, Park J, Oh YH, et al. Multivariate analysis to discriminate the origin of sesame seeds by multi-element analysis inductively coupled plasma–mass spectrometry. Food Sci Biotechnol. 2017;26:375–9. https://doi.org/10.1007/s10068-017-0051-7
  96. 96. International Seed Testing Association. International rules for seed testing 2024. 2024th edition. ISTA; 2024.
  97. 97. Vaz-Tostes DP, Dos Santos HO, Dos Santos Guaraldo MM, Fraga AC, Souza Pereira WV. Image analysis as cotton seed chemical delinting evaluation tool. Multimed Tools Appl. 2024;84:30851–64. https://doi.org/10.1007/s11042-024-20397-3
  98. 98. Hassan MI, Abdulmumin Y, Abdulmumin TM, Murtala M, Muhammad AI, Anas HU, et al. Physico-chemical and GC–MS analysis of Gossypium hirsutum (cotton seed) oil. J Appl Life Sci Int. 2022;25(3):25–39. https://doi.org/10.9734/jalsi/2022/v25i330287
  99. 99. Choi YH, Hong CK, Kim M, Jung SO, Park J, Oh YH, et al. Multivariate analysis to discriminate the origin of sesame seeds by multi-element analysis inductively coupled plasma-mass spectrometry. Food Sci Biotechnol. 2017;26(2):375–9. https://doi.org/10.1007/s10068-017-0051-6

Downloads

Download data is not yet available.