Review Articles
Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II
Molecular regulation and breeding prospects of second-generation hybrid rice
Department of Genetics and Plant Breeding, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Rice, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Rice, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Rice, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Second-generation hybrid rice breeding, using two-line systems also called Environment-sensitive Genic Male Sterility (EGMS), represents a significant advancement in hybrid rice. By eliminating the need for a maintainer line, this method simplifies hybrid seed production and reduces associated costs, thereby offering promising solutions for yield improvement and food security. EGMS encompasses various systems, including Temperature-sensitive (TGMS), Reverse TGMS (RTGMS), Photoperiod-sensitive (PGMS), Photoperiod and Temperature-sensitive (PTGMS) and Humidity-sensitive (HGMS), each of which is regulated by specific environmental cues. This review highlights the evolution, genes associated with and classification of EGMS systems, as well as their roles in hybrid rice production. The different methods of production and selection of location for the EGMS lines are also discussed. Advances in biotechnology, such as CRISPR/Cas9 gene editing, mutation breeding and speed breeding, have significantly improved the stability, adaptability and faster development of EGMS lines. Furthermore, gene pyramiding and marker-assisted selection (MAS) enhance trait integration, facilitating the creation of hybrids with superior agronomic traits, disease resistance and environmental stress tolerance. India’s contributions in two-line breeding, especially the development of several TGMS lines suitable for regional climatic conditions, demonstrate the potential of TGMS in hybrid rice technology. This will help meet the demands of a growing population while enhancing climate resilience.
References
- 1. Singh SK, Bhati PK, Sharma A, Sahu V. Super hybrid rice in China and India: Current status and future prospects. Int J Agric Biol. 2015;17:221232.
- 2. Virmani SS. Advances in hybrid rice research and development in the tropics. Hybrid rice for food security, poverty alleviation, and environmental protection. Los Baňos, Philippines: International Rice Research Institute; 2003. p. 7-20.
- 3. Spielman DJ, Kolady DE, Ward PS. The prospects for hybrid rice in India. Food Secur. 2013;5(5):651-65. https://doi.org/10.1007/s12571-013-0291-7
- 4. Huang JZ, E ZG, Zhang HL, Shu QY. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization. Rice. 2014;7:13. https://doi.org/10.1186/s12284-014-0013-6
- 5. Rao GS, Deveshwar P, Sharma M, Kapoor S, Rao KV. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties. Plant Mol Biol. 2018;96(1-2):35-51. https://doi.org/10.1007/s11103-017-0678-5
- 6. Moon S, Lee YS, Gutierrez-Marcos J, Jung KH. Advancements in hybrid rice production: improvements in male sterility and synthetic apomixis for sustainable agriculture. Plant Biotechnol. 2025;23(6):2330-45. https://doi.org/10.1111/pbi.70057
- 7. Sheng Z, Tang L, Shao G, Xie L, Jiao G, Tang S, et al. The rice thermo-sensitive genic male sterility gene tms9: pollen abortion and gene isolation. Euphytica. 2015;203(1):145-52. https://doi.org/10.1007/s10681-014-1285-z
- 8. Virmani SS. Two-line hybrid rice breeding manual. IRRI; 2003. 88 p.
- 9. Fang Y, Yang J, Guo X, Qin Y, Zhou H, Liao S, et al. CRISPR/Cas9-induced mutagenesis of TMS5 confers thermosensitive genic male sterility by influencing protein expression in rice (Oryza sativa L.). Int J Mol Sci. 2022;23(15):8354. https://doi.org/10.3390/ijms23158354
- 10. Swaminathan M. Progress and prospects of two-line rice breeding in India. Intech Open; 2022. https://doi.org/10.5772/intechopen.99545
- 11. Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, et al. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun. 2014;5:4884. https://doi.org/10.1038/ncomms5884
- 12. Ashraf MF, Peng G, Liu Z, Noman A, Alamri S, Hashem M, et al. Molecular control and application of male fertility for two-line hybrid rice breeding. Int J Mol Sci. 2020;21(21):7868. https://doi.org/10.3390/ijms21217868
- 13. Rajesh T, Radhakrishnan VV, Kumari KT, Francies RM, Sreenivasan E, Ibrahim KK, et al. Critical stages of thermo-sensitive genic male sterile lines of rice in Kerala. ORYZA - Int J Rice. 2017;54(4):401-6. https://doi.org/10.5958/2249-5266.2017.00054.6
- 14. Ku S, Yoon H, Suh HS, Chung YY. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta. 2003;217(4):559-65. https://doi.org/0.1007/s00425-003-1030-7
- 15. Zhang C, Zhu Q, Li J, Zhang H, Lee D, Chen L. Regulatory mechanisms of temperature, light, and water on the expression of male sterility genes in rice. Mol Plant Breed. 2024;15(6): 429-41. https://doi.org/10.5376/mpb.2024.15.0040
- 16. Lopez MT, Virmani SS. Development of TGMS lines for developing two-line rice hybrids for the tropics. Euphytica. 2000;114:211-5. https://doi.org/10.1023/A:1003947219699
- 17. Wang N, Li X, Zhu J, Yang ZN. Molecular and cellular mechanisms of photoperiod- and thermo-sensitive genic male sterility in plants. Mol Plant. 2025;18(1):26-41. https://doi.org/10.1016/j.molp.2024.12.012
- 18. Dora SA, El-Dinary ME, Yousef MA, Selim ME. Genetic behavior for reverse thermo-sensitive genic male sterility (RTGMS) through segregating generations of some rice genotypes in Egypt. J Sus Agric Sci. 2017;43(1):1-8.
- 19. Jia JH, Zhang DS, Li CY, Qu XP, Wang SW, Chamarerk V, et al. Molecular mapping of the reverse thermo-sensitive genic male-sterile gene (rtms1) in rice. Theor Appl Genet. 2001;103(4):607-12. https://doi.org/10.1007/PL00002916
- 20. Jin-Long NI, De-zheng W, Da-Hu NI, Feng-shun S, Jian-bo Y, Da-nian Y. Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice. J Integr Agric. 2022;21(2):316-25. https://doi.org/10.1016/S2095-3119(20)63563-8
- 21. Zhang Q, Shen BZ, Dai XK, Mei MH, Saghai Maroofo MA, Li ZB, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Genetics. 1994;91(18):8675-9. https://doi.org/10.1073/pnas.91.18.8675
- 22. Fan Y, Zhang Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod. 2018;31:3-14. https://doi.org/10.1007/s00497-017-0310-5
- 23. Yuan SC, Zhang ZG, He HH, Zen HL, Lu KY, Lian JH, et al. Two photoperiodic reactions in photoperiod‐sensitive genic male‐sterile rice. Crop Sci. 1993;33(4):651-60. https://doi.org/10.2135/cropsci1993.0011183X003300040002x
- 24. Nthakanio PN, Qingzhong X. Defining the effects of day-length and temperature in PGMS rice trait. African Crop Science Conference Proceedings; 2013. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20163288722
- 25. Nthakanio NP, Qingzhong X. Programmed cell death-like behavior in photoperiodsensitive genic male sterile (PGMS) rice. Afr J Biotechnol. 2011;10(16):3027-34. https://doi.org/10.5897/AJB08.1220
- 26. Liu N, Shan Y, Wang FP, Xu CG, Peng KM, Li XH, et al. Identification of an 85-kb DNA fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice. Mol Gene Genomics. 2001;266(2):271-5. https://doi.org/10.1007/s004380100553
- 27. Huang T-y, Wang Z, Hu Y-g, Shi S-p, Peng T, Chu X-d, et al. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa). Rice Sci. 2008;15(2):153-6. https://doi.org/10.1016/S1672-6308(08)60035-9
- 28. Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 2012;22(4):649-60. https://doi.org/10.1038/cr.2012.28
- 29. Ziguo Z, Hanlai Z, Jing Y, Shengchao Y, Duanpin Z, et al. Conditions inducing fertility alteration and ecological adaptation of photoperiod-sensitive genic male-sterile rice. Field Crops Research. 1994; 38(2):111-120. https://doi.org/10.1016/0378-4290(94)90005-1
- 30. El-Mowafi HF, AlKahtani MDF, El-Hity MA, Reda AM, Al Husnain L, El-Degwy ES, et al. Characterization of fertility alteration and marker validation for male sterility genes in novel PTGMS lines hybrid rice. Saudi J Biol Sci. 2021;28(8):4109-16. https://doi.org/10.1016/j.sjbs.2021.04.058
- 31. Xu J, Wang B, Wu Y, Du P, Wang J, Wang M, et al. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.). Theor Appl Genet. 2011;122(2):365-72. https://doi.org/10.1007/s00122-010-1452-0
- 32. Liu Y, Zhang F, Luo X, Kong D, Zhang A, Wang F, et al. Molecular breeding of a novel PTGMS line of WDR for broad-spectrum resistance to blast using Pi9, Pi5, and Pi54 genes. Rice. 2021;14(1):96. https://doi.org/10.1186/s12284-021-00537-1
- 33. Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, Liu D, et al. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun. 2018;9(1):604. https://doi.org/10.1038/s41467-018-03048-8
- 34. Xu Y, Yu D, Chen J, Duan M. A review of rice male sterility types and their sterility mechanisms. Heliyon. 2023;9(7):e18204. https://doi.org/10.1016/j.heliyon.2023.e18204
- 35. Yu B, Liu L, Wang T. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. Plant Cell Environ. 2019;42(12):3340-54. https://doi.org/10.1111/pce.13637
- 36. Ni E, Deng L, Chen H, Lin J, Ruan J, Liu Z, et al. OsCER1 regulates humidity-sensitive genic male sterility through very-long-chain (VLC) alkane metabolism of tryphine in rice. Funct Plant Biol. 2021;48(5):461-8. https://doi.org/10.1071/FP20168
- 37. Chen H, Zhang Z, Ni E, Lin J, Peng G, Huang J, et al. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytologist. 2020;225(5):2077-93. https://doi.org/10.1111/nph.16288
- 38. Li J, Luo X, Zhou K. Research and development of hybrid rice in China. Plant Breed. 2024;143:96-104. https://doi.org/10.1111/pbr.13134
- 39. Qian Q, Zhang F, Xin Y. Yuan Longping and hybrid rice research. Rice. 2021;14(1):101. https://doi.org/10.1186/s12284-021-00542-4
- 40. Mei MH, Dai XK, Xu CG, Zhang Q. Mapping and genetic analysis of the genes for photoperiod‐sensitive genic male sterility in rice using the original mutant Nongken 58S. Crop Sci. 1999;39(6):1711-5. https://doi.org/10.2135/cropsci1999.3961711x
- 41. Zhang X, He Q, Zhang W, Shu F, Wang W, He Z, et al. Genetic relationships and identification of core germplasm among rice photoperiod- and thermo-sensitive genic male sterile lines. BMC Plant Biol. 2021;21(1):313. https://doi.org/10.1186/s12870-021-03062-x
- 42. Pardeep K. Two-line hybrid production system and their applications in rice. Int J Agric Sci. 2016;8:3502-4.
- 43. Ali AJ, Siddiq EA. Isolation and characterization of a reverse temperature sensitive genic male sterile mutant in rice. Indian J Genet Plant Breed. 1999;59(04):423-8.
- 44. He Q, Deng H, Sun P, Zhang W, Shu F, Xing J, et al. Hybrid Rice. Engineering. 2020;6(9):967-73. https://doi.org/10.1016/j.eng.2020.08.005
- 45. Wang YG, Xing QH, Deng QY, Liang FS, Yuan LP, Weng ML, et al. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theoret Appl Genet. 2003;107:917-21. https://doi.org/10.1007/s00122-003-1327-8
- 46. Latha R, Thiyagarajan K, Senthilvel S. Genetics, fertility behaviour and molecular marker analysis of a new TGMS line, TS6, in rice. Plant Breed. 2008;123(3):235-40. https://doi.org/10.1111/j.1439-0523.2004.00975.x
- 47. Nas TMS, Sanchez DL, Diaz GQ, Mendioro MS, Virmani SS. Pyramiding of thermosensitive genetic male sterility (TGMS) genes and identification of a candidate tms5 gene in rice. Euphytica. 2005;145:67-75. https://doi.org/10.1007/s10681-005-0206-6
- 48. Jiang J, Mou T, Yu H, Zhou F. Molecular breeding of thermo-sensitive genic male sterile (TGMS) lines of rice for blast resistance using Pi2 gene. Rice. 2015;8(1):11. https://doi.org/10.1186/s12284-015-0048-3
- 49. Mi J, Yang D, Chen Y, Jiang J, Mou H, Huang J, et al. Accelerated molecular breeding of a novel P/TGMS line with broad-spectrum resistance to rice blast and bacterial blight in two-line hybrid rice. Rice. 2018;11(1):11. https://doi.org/10.1186/s12284-018-0203-8
- 50. Wang WM, Fan J, Jeyakumar JMJ. Rice false smut: an increasing threat to grain yield and quality. In: Protecting rice grains in the post-genomic era. Intech; 2019. p. 89-108. https://doi.org/10.5772/intechopen.84862
- 51. Lore JS, Jain J, Kumar S, Kamboj I, Sidhu N, Khanna R, et al. Identification of potential donors for false smut resistance in elite breeding lines of rice (Oryza sativa L.) under field conditions. Plant Genet Resour. 2022;20(1):7-14. https://doi.org/10.1017/S1479262122000041
- 52. Tang S, Gao D, Chen Y, Li Y, Zhang S, Zhao Z. Inheritance pattern of two-line hybrid rice resistance to false smut. Agric Sci Technol. 2014;15(4):557.
- 53. Peng P, Jiang H, Luo L, Ye C, Xiao Y. Pyramiding of multiple genes to improve rice blast resistance of photo-thermo sensitive male sterile line, without yield penalty in hybrid rice production. Plants. 2023;12(6):1389. https://doi.org/10.3390/plants12061389
- 54. Yu J, Han J, Kim YJ, Song M, Yang Z, He Y, et al. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Natl Acad Sci USA. 2017;114(46):12327-32. https://doi.org/10.1073/pnas.1705189114
- 55. Virmani SS. Hybrid Rice. In: Sparks DL, editor. Advances in agronomy. Vol. 57. Academic Press; 1996. p. 377-462.
- 56. Gayathri R, Stephen R. Differential expression of transport and signalling genes in leaves and panicle regulates the development of pollen-free anthers in TGMS red rice. Cereal Res Commun. 2021;49(3):465-73. https://doi.org/10.1007/s42976-020-00124-y
- 57. Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep. 2016;6:37395. https://doi.org/10.1038/srep37395
- 58. Gayathri R, Stephen R. Characterization of thermo sensitive red rice line for its suitability in the State of Kerala, India. Madras Agric J. 2018;105(Special Issue).
- 59. Chandra N. Physiological characterization of thermo-sensitive genic male sterility in rice (Oryza sativa L.). M.Sc. Kerala Agricultural University; 2014. https://krishikosh.egranth.ac.in/items/e3eb51c3-d59d-4ecc-ac37-e47b639edc07/full
- 60. Kalaiyarasi R, Binodh AK, Thiyagarajan K. Evaluation of promising TGMS lines for exploitation of two-line heterosis in rice (Oryza sativa L.). Indian J Genet Plant Breed. 2006;66(03):225-6.
- 61. Srimathi K, Arumugam Pillai M, Aananthi N, Rajababu C. Genetic studies on TGMS lines for development of superior two-line rice hybrids. EJPB. 2019;10(2):620-6. http://doi.org/10.5958/0975-928X.2019.00078.4
- 62. Roy RR, Kumaresan D. Genetic variability and association studies for yield and floral traits in temperature sensitive male sterile lines (TGMS) of rice (Oryza sativa L). EJPB. 2019;10(3):1200-9. https://doi.org/10.5958/0975-928X.2019.00152.2
- 63. Vishvapriya M, Binodh AK, Manonmani S, Kumaresan D, Senthil A, Kumar GS. Genetics of sterility behaviour in thermo sensitive genic male sterility system in rice (Oryza sativa L.). EJPB. 2023;14(3):1105-10. https://doi.org/10.37992/2023.1403.126
- 64. Ali J, Dela Paz M, Robiso CJ. Advances in two-line heterosis breeding in rice via the temperature-sensitive genetic male sterility system. In: Rice improvement: physiological, molecular breeding and genetic perspectives. Springer International Publishing; 2021. p. 99-145. https://doi.org/10.1007/978-3-030-66530-2_4
- 65. Borkakati RP, Virmani SS. Genetics of thermosensitive genic male sterility in rice. Euphytica. 1996;88:1-7. https://doi.org/10.1007/BF00029259
- 66. Yang Q, Liang C, Zhuang W, Li J, Deng Q, Wang B, et al. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping. 2007;225:321-30. https://doi.org/10.1007/s00425-006-0353-6
- 67. Jiang D, Lu S, Zhou H, Wu X, Zhuang C, Liu Y, et al. Mapping of the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene tms5 with EST and SSR markers. Chin Sci Bull. 2006;51:417-20. https://doi.org/10.1007/s11434-006-0417-9
- 68. Minghua M, Liang C, Zhang Z, Li Z, Caiguo XU, Zhang Q. pms 3 is the locus causing the original photoperiod-sensitive male sterility mutation of “Nongken 588”. Science in China (Series C). 1999;42.
- 69. Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, et al. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theoret Appl Genet. 2006;112(3):570-80. https://doi.org/10.1007/s00122-005-0165-2
- 70. Jiang D, Shahid MQ, Wu J, Deng R, Chen Z, Wang L, et al. Thermo-sensitive genic male sterile lines of neo-tetraploid rice developed through gene editing technology revealed high levels of hybrid vigor. Plants. 2022;11(11):1390. https://doi.org/10.3390/plants11111390
- 71. Li C, Tao RF, Li Y, Duan MH, Xu JH. Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa). Genomics. 2020;112(3):2119-29. https://doi.org/10.1016/j.ygeno.2019.12.006
- 72. Pan Y, Li Q, Wang Z, Wang Y, Ma R, Zhu L, et al. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling. BMC Genomics. 2014;15(1):1114. https://doi.org/10.1186/1471-2164-15-1114
- 73. Xinggui L, Virmani SS, Yang R. Advances in two-lines hybrids rice breeding. In Advances in hybrid rice breeding. Phillippines: IARI; 1998. p. 89-98.
- 74. Dong NV, Subudhi PK, Luong PN, Quang VD, Quy TD, Zheng HG, et al. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theoret Appl Genet. 2000;100:727-34. https://doi.org/10.1007/s001220051345
- 75. Reddy OUK, Siddiq EA, Sarma NP, Ali J, Hussain AJ, Nimmakayala P, et al. Genetic analysis of temperature-sensitive male sterilty in rice. Theoret Appl Genet. 2000;100:794-801. https://doi.org/10.1007/s001220051345
- 76. Zhou YF, Zhang XY, Xue QZ. Fine mapping and candidate gene prediction of the photoperiod and thermo-sensitive genic male sterile gene pms1(t) in rice. J Zhejiang Univ Sci B. 2011;12(6):436-47. https://doi.org/10.1631/jzus.B1000306
- 77. Li X, Lu Q, Wang F, Xu C, Zhang Q. Separation of the two-locus inheritance of photoperiod sensitive genic male sterility in rice and precise mapping the pms3 locus. Euphytica. 2001;119:343-8. https://doi.org/10.1023/A:1017570025805
- 78. Huang T-y, Wang Z, Hu Y-g, Shi S-p, Peng T, Chu X-d, et al. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa). Rice Sci. 2008;15(2):153-6. https://doi.org/10.1016/S1672-6308(08)60035-9
- 79. Peng HF, Zhang ZF, Wu B, Chen XH, Zhang GQ, Zhang ZM, et al. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.). Theoret Appl Genet. 2008;118(1):77-83. https://doi.org/10.1007/s00122-008-0877-1
- 80. Zhang X, Chang G, Wu Z, Wan J, Yang J, Wang F, et al. Identification and fine mapping of rtms1-D, a gene responsible for reverse thermosensitive genic male sterility from Diannong S-1X. Plant Divers. 2022;44(2):213-21. https://doi.org/10.1016/j.pld.2021.05.002
- 81. Kadirimangalam SR, Hifzur R, Saraswathi R, Kumar M, Raveendran M, Robin S. Fine mapping and expression analysis of thermosensitive genic male sterility gene (tms) in rice (Oryza sativa L.). Plant Gene. 2019;19:100186. https://doi.org/10.1016/j.plgene.2019.100186
- 82. Lopez MT, Toojinda T, Vanavichit A, Tragoonrung S. Microsatellite markers flanking the tms2 gene facilitated tropical TGMS rice line development. Crop Sci. 2003;43(6):2267-71. https://doi.org/10.2135/cropsci2003.2267
- 83. Subudhi PK, Borkakati RP, Virmani SS, Huang N. Identification of RAPD markers linked to rice thermosensitive genetic male sterility gene by bulk segregant analysis. Rice Genet Newsl. 1995;12:228-31.
- 84. Lang NT, Subudhi PK, Virmani SS, Brar DS, Khush GS, Li Z, et al. Development of PCR‐based markers for thermosensitive genetic male sterility gene tms3 (t) in rice (Oryza sativa L.). Hereditas. 1999;131(2):121-7. https://doi.org/10.1111/j.1601-5223.1999.00121.x
- 85. Song FS, Ni JL, Qian YL, Li L, Ni DH, Yang JB. Development of SNP-based dCAPS markers for identifying male sterile gene tms5 in two-line hybrid rice. Genet Mol Res. 2016;15(3). https://doi.org/10.4238/gmr.15038512
- 86. Hien V, Yoshimura A. Identifying map location and markers linked to thermosensitive genic male sterility gene in 103S line. J Sci Dev. 2015;13(3):331-6.
- 87. Hussain AJ, Ali J, Siddiq EA, Gupta VS, Reddy UK, Ranjekar PK. Mapping of tms8 gene for temperature-sensitive genic male sterility (TGMS) in rice (Oryza sativa L.). Plant Breed. 2012;131(1):42-7. https://doi.org/10.1111/j.1439-0523.2011.01897.x
- 88. Sheng Z, Wei X, Shao G, Chen M, Song J, Tang S, et al. Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male-sterile gene in rice (Oryza sativa L.). Plant Breed. 2013;132(2):159-64. https://doi.org/10.1111/pbr.12024
- 89. Qi Y, Liu Q, Zhang L, Mao B, Yan D, Jin Q, et al. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoret Appl Genet. 2014;127(5):1173-82. https://doi.org/10.1007/s00122-014-2289-8
- 90. Thiyagarajan K, Abirami S, Robin S, Manonmani S, Jambhulkar SJ. Development of TGMS lines with improved floral traits through mutation breeding in rice. Dept. of Atomic Energy; 2006. https://inis.iaea.org/records/r6h5h-vh846
- 91. Zhang H, Liang M, Chen J, Wang H, Ma L. Rapid generation of fragrant thermo-sensitive genic male sterile rice with enhanced disease resistance via CRISPR/Cas9. Planta. 2024;259(5):112. https://doi.org/10.1007/s00425-024-04392-4
- 92. Barman HN, Sheng Z, Fiaz S, Zhong M, Wu Y, Cai Y, et al. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biol. 2019;19(1):109. https://doi.org/10.1186/s12870-019-1715-0
- 93. Collard BCY, Beredo JC, Lenaerts B, Mendoza R, Santelices R, Lopena V, et al. Revisiting rice breeding methods–evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod Sci. 2017;20(4):337-52. https://doi.org/10.1080/1343943X.2017.1391705
- 94. Ali J, Dela Paz M, Marfori CM, Nicolas KL. Environment sensitive genic male sterility (EGMS) based hybrid breeding in rice. Molecular breeding strategies for crop improve. One-day Dialogue; 2017. p. 120-42.
- 95. Jiang J, Yang D, Ali J, Mou T. Molecular marker-assisted pyramiding of broad-spectrum disease resistance genes, Pi2 and Xa23, into GZ63-4S, an elite thermo-sensitive genic male-sterile line in rice. Mol Breed. 2015;35(3):83. https://doi.org/10.1007/s11032-015-0282-9
- 96. Singh VK, Upadhyay P, Sinha P, Mall AK, Ellur RK, Singh A, et al. Prediction of hybrid performance based on the genetic distance of parental lines in two-line rice (Oryza sativa L.) hybrids. J Crop Sci Biotechnol. 2011;14(1):1-10. https://doi.org/10.1007/s12892-010-0111-y
- 97. Kanimozhi P, Pushpam R, Binodh AK, Kannan R, Pillai MA. Evaluation of TGMS lines for good floral and out crossing related traits in rice. EJPB. 2018;9(4):1497-502. https://doi.org/10.5958/0975-928X.2018.00185.0
- 98. Robin S, Manomani S, Pushpam R, Arasakesary SJ, Thiyagarajan K. TNAU 60S (IC0622805; INGR17028), a TGMS line of rice (Oryza sativa). Indian J Plant Genet Resour. 2019;32(2):239-40.
- 99. Manonmani S, Pushpam R, Robin S. Stability of TGMS lines under different temperature regimes for pollen sterility. J Rice Res. 2016;9(1):17-9.
- 100. Sasikala R, Kalaiyarasi R, Paramathama M. Exploitation of twoline heterosis utilizing thermosensitive genic male sterility system in rice (Oryza sativa L.). Int J Trop Agric. 2015;33(2):1111-7.
Downloads
Download data is not yet available.