Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Formulation development, optimization and evaluation of Aloe vera gel for the management of post-harvest disease of mango anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc.

DOI
https://doi.org/10.14719/pst.9083
Submitted
25 April 2025
Published
27-08-2025

Abstract

The Mango (Mangifera indica L.), one of the most economically important fruit crops, is produced predominantly in India, the world's leading mango producer. India grapples with anthracnose, a major farm and post-harvest disease that significantly limits mango production, particularly in high-humidity regions of India. The diseased mangoes collected from Kumbakarai, Periyakulam and nearby Madurai in Tamil Nadu, India, were used to identify a virulent strain of C. gloeosporioides through molecular analysis. Sequencing of the 560 bp PCR product yielded the GenBank Accession Number Ol468719. Phylogenetic analysis of the sequence showed 99 % identity with C. gloeosporioides sequences in the database. A. vera dry gels were prepared and diluted to concentrations of 10 %, 20 %, 30 %, 40 % and 50 % using potato dextrose agar medium. In vitro efficacy of different concentrations of A. vera gel against C. gloeosporioides was tested. Among the 10 %, 20 %, 30 %, 40 % and 50 % concentrations, significant inhibition was recorded at 10 %. Several antimicrobial compounds were identified from A. vera gel, including 1-dodecanol, 1-tetradecene, 1-hexadecanol, heneicosane, dibutyl phthalate and 1-heptacosanol, by GC-MS technique. An emulsifiable concentrate of A. vera gel was subsequently formulated and evaluated for its efficacy against the pathogen, offering a potential alternative approach for postharvest disease management.

References

  1. 1. Paull RE, Duarte O. Tropical Fruits. Vol. 1. 2nd ed. Wallingford (UK): CABI Publishing. 2011. p. 391. https://doi.org/10.1079/9781845936723.0000
  2. 2. Tovar-Pedraza JM, Mora-Aguilera JA, Nava-Díaz C, Lima NB, Michereff SJ, Sandoval-Islas JS, et al. Distribution and pathogenicity of Colletotrichum species associated with mango anthracnose in Mexico. Plant Dis. 2020;104(1):137–46. https://doi.org/10.1094/PDIS-01-19-0178-RE
  3. 3. Mukherjee SK, Litz RE. Introduction: botany and importance. In: Litz RE, editor. The mango: botany, production and uses. Wallingford (UK): CABI. 2009. p. 1–18. https://doi.org/10.1079/9781845934897.0001
  4. 4. Rosca-Casian O, Parvu M, Vlase L, Tamaș M. Antifungal activity of Aloe vera leaves. Fitoterapia. 2007;78(3):219–22. https://doi.org/10.1016/j.fitote.2006.11.008
  5. 5. Susanti D, Awang NA, Qaralleh H, Sheikh Mohamed HI, Attoumani N. Antimicrobial activity and chemical composition of essential oil of Malaysian Etlingera elatior (Jack) R.M. Smith flowers. J Essent Oil Bear Plants. 2013;16(2):294–9. https://doi.org/10.1080/0972060X.2013.793968
  6. 6. Yoshpa M. Ethnobotany and phytochemistry of the sacred blue lily of the Nile, Nymphae caerulea Savigny, Nymphaeaceae [dissertation]. Philadelphia(PA): University of the Sciences in Philadelphia. 2004;3135408.
  7. 7. Khatiwora E, Adsul VB, Kulkarni M, Deshpande NR, Kashalkar RV. Antibacterial activity of dibutyl phthalate: a secondary metabolite isolated from Ipomoea carnea stem. J Pharm Res. 2012;5(1):150–2.
  8. 8. Ploetz RC, Freeman S. Foliar, floral and soilborne diseases. In: Litz RE, editor. The mango: botany, production and uses. Wallingford (UK): CABI. 2009; p. 231–302. https://doi.org/10.1079/9781845934897.0231
  9. 9. Prusky D, Kobiler I, Miyara I, Alkan N. Fruit diseases. In: Litz RE, editor. The mango: botany, production and uses. Wallingford (UK): CABI. 2009; p. 210–30. https://doi.org/10.1079/9781845934897.0210
  10. 10. Kamle M, Kumar P. Colletotrichum gloeosporioides: pathogen of anthracnose disease in mango (Mangifera indica L.). Curr Trends Plant Dis Diagn Manag Pract. 2016;207–19. https://doi.org/10.1007/978-3-319-27312-9_9
  11. 11. Arauz LF. Mango anthracnose: economic impact and current options for integrated management. Plant Dis. 2000;84(6):600–11. https://doi.org/10.1094/PDIS.2000.84.6.600
  12. 12. Ploetz RC. Diseases of mango. In: Diseases of Tropical Fruit Crops. London (GB): CABI Publishing. 2003; p. 327–63. https://doi.org/10.1079/9780851993904.0327
  13. 13. Reynolds T, Dweck AC. Aloe vera leaf gel: a review update. J Ethnopharmacol. 1999;68(1–3):3–37. https://doi.org/10.1016/S0378-8741(99)00085-9
  14. 14. Khaliq G, Abbas HT, Ali I, Waseem M. Aloe vera gel enriched with garlic essential oil effectively controls anthracnose disease and maintains postharvest quality of banana fruit during storage. Hortic Environ Biotechnol. 2019;60:659–69. https://doi.org/10.1007/s13580-019-00159-z
  15. 15. Raksha B, Pooja S, Babu S. Bioactive compounds and medicinal properties of Aloe vera L.: an update. J Plant Sci. 2014;2(3):102–7. https://doi.org/10.11648/j.jps.20140203.11
  16. 16. Long M, Ozolina A, Beales PA. Detection of fungal plant pathogens from plants, soil, water and air. In: Fungal plant pathogens: applied techniques. Wallingford (GB): CABI. 2023;23–47. https://doi.org/10.1079/9781800620575.0006
  17. 17. Chakraborty BN, Chakraborty U, Saha A, Dey PL, Sunar K. Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RAPD profiles. Glob J Biotechnol Biochem. 2010;5(1):55–61.
  18. 18. Bhardwaj R. GC-MS analysis and antimicrobial activity of alkaloids of Tecomella undulata. J Med Plant Stud. 2018;6(6):68–72.
  19. 19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  20. 20. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–7. https://doi.org/10.1093/molbev/msab120
  21. 21. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. 2nd Ed. New York(NY): John Wiley & Sons. 1984. p. 680.
  22. 22. Krishnakumar R, Kraus WL. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell. 2010;39(5):736–49. https://doi.org/10.1016/j.molcel.2010.08.014
  23. 23. Ford R, Garnier-Géré PH, Nasir M, Taylor PWJ. Structure of Ascochyta lentis in Australia revealed with random amplified polymorphic DNA (RAPD) markers. Australas Plant Pathol. 2000;29(1):36-45. https://doi.org/10.1071/AP00006
  24. 24. Ghaidaa HA, Neihaya HZ, Nada ZM, Amna MA. The biofilm inhibitory potential of compound produced from Chlamydomonas reinhardtii against pathogenic microorganisms. Baghdad Sci J. 2020;17(1):10. https://doi.org/10.21123/bsj.2020.17.1.0034.
  25. 25. de Rodrı́guez DJ, Hernández-Castillo D, Rodrı́guez-Garcı́a R, Angulo-Sánchez JL. Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind Crops Prod. 2005;21(1):81–7. https://doi.org/10.1016/j.indcrop.2004.01.002
  26. 26. Malmir M, Serrano R, Silva O. Anthraquinones as potential antimicrobial agents– a review. In: Méndez-Vilas A, editor. Antimicrobial research: novel bioknowledge and educational programs. 2017. p. 55–61.
  27. 27. Ferro VA, Bradbury F, Cameron P, Shakir E, Rahman SR, Stimson WH. In vitro susceptibilities of Shigella flexneri and Streptococcus pyogenes to inner gel of Aloe barbadensis Miller. Antimicrob Agents Chemother. 2003;47(3):1137–9. https://doi.org/10.1128/AAC.47.3.1137-1139.2003
  28. 28. García-Sosa K, Villarreal-Alvarez N, Lübben P, Peña-Rodríguez LM. Chrysophanol, an antimicrobial anthraquinone from the root extract of Colubrina greggii. J Mex Chem Soc. 2006;50(2):76–8. https://doi.org/10.29356/jmcs.v50i2.1306
  29. 29. Saks Y, Barkai-Golan R. Aloe vera gel activity against plant pathogenic fungi. Postharvest Biol Technol. 1995;6(1–2):159–65. https://doi.org/10.1016/0925-5214(94)00051-S
  30. 30. Wu Y-W, Ouyang J, Xiao X-H, Gao W-Y, Liu Y. Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin J Chem. 2006;24(1):45–50. https://doi.org/10.1002/cjoc.200690020

Downloads

Download data is not yet available.