Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Sustainable management of saline and sodic soils for growing vegetable crops - A review

DOI
https://doi.org/10.14719/pst.9100
Submitted
25 April 2025
Published
26-07-2025
Versions

Abstract

Vegetables are essential that play a crucial role in human nutrition. Salinity is a major constraint affecting agricultural productivity globally. Salt affects soils comprise approximately 20 % of cultivated land and 33 % of irrigated land. Salt stress hampers plant growth, thereby reducing the yield and quality of various crops. Salinity and sodicity adversely affect the biological, physical and chemical properties of soil, leading to reduced productivity and land degradation, particularly in irrigated and rainfed agricultural systems. Salinity reduces protein, fatty acid and total carbohydrate content in crops, while often increasing the accumulation of amino acids. The presence of soluble salts and excess sodium ions (Na+) in soil adversely affects plant health, emphasizing the need for effective resource management and sustainable practices. High salinity leads to surface crusting, reduced water infiltration, sodium-induced soil dispersion and decreased hydraulic conductivity (HC), all of which negatively impact plant development. Sodicity refers to the presence of excessive exchangeable sodium in soil relative to calcium and magnesium, which disrupts soil structure and fertility. High sodicity inhibits plant growth due to salt toxicity, nutritional imbalances and reduced availability of essential minerals in the soil. This review discusses the impact of saline and sodic soils on various vegetable crops and explores sustainable management practices to mitigate their effects.

References

  1. 1. Genova C, Weinberger K, Chanthasombath T, Inthalungdsee B, Sanatem K, Somsak K. Postharvest loss in the supply chain for vegetables–The case of tomato, yardlong bean, cucumber and chili in Lao PDR. Shanhua: AVRDC (The World Vegetable Center); 2006. Working Paper No. 17.
  2. 2. Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci. 2005;45:437-48. https://doi.org/10.2135/cropsci2005.0437
  3. 3. FAO (Food and Agricultural Organization). Global network on integrated soil management for sustainable use of salt affected soils; 2000. Available from: www.fao.org/agl
  4. 4. Maas EV. Crop. In: Tanji KK, editor. Agricultural salinity assessment and management. New York: ASCE Manuals and Reports on Engineering No. 71; 1990. p. 262-304.
  5. 5. Rausch T, Kirsch M, Low R, Lehr A, Viereck R, Zhigang A. Salt stress responses of higher plants: the role of proton pumps and Na+/H+ antiporters. J Plant Physiol. 1996;148(3&4):425-33. https://doi.org/10.1016/S0176-1617(96)80275-6
  6. 6. West DW, Merrigan IF, Taylor JA. Germination, growth and flowering of cowpea, mung bean and soybean in relation to soil salinity; 1978.
  7. 7. Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 2015;22(2):123-31. https://doi.org/10.1016/j.sjbs.2014.12.001
  8. 8. Jones RA. The development of salt-tolerant tomatoes: breeding strategies. Acta Hortic. 1986;190:101-14. https://doi.org/10.17660/ActaHortic.1986.190.8
  9. 9. Cheeseman JM. Mechanisms of salinity tolerance in plants. Plant Physiol. 1988;87(3):557-60. https://doi.org/10.1104/pp.87.3.547
  10. 10. Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167(3):645-63. https://doi.org/10.1111/j.1469-8137.2005.01487.x
  11. 11. Jamil A, Riaz S, Ashraf M, Foolad R. Gene expression profiling of plants under salt stress: a review. J Plant Sci. 2011;30(5):435-58. https://doi.org/10.1080/07352689.2011.605739
  12. 12. Acosta JA, Boris J, Karsten K, Martínez SM. Salinity increases mobility of heavy metals in soils. Chemosphere. 2011;85(8):1318-24. https://doi.org/10.1016/j.chemosphere.2011.07.046
  13. 13. Allen JA, Chambers JL, McKinney D. Intraspecific variation in the response of Taxodium distichum seedlings to salinity. For Ecol Manage. 1994;70(1&3):203-14. https://doi.org/10.1016/0378-1127(94)90087-6
  14. 14. Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 2005;10(12):615-20. https://doi.org/10.1016/j.tplants.2005.10.002
  15. 15. Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51:163-90. https://doi.org/10.1007/s11099-013-0021-6
  16. 16. Waisel Y. Biology of halophytes. Elsevier; 2012. ISBN 0323151582.
  17. 17. Glick BR, Cheng Z, Czarny J, Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol. 2007;119:329-39. https://doi.org/10.1007/s10658-007-9162-4
  18. 18. Blaylock AD. Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Laramie, Wyoming: Cooperative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture; 1994.
  19. 19. Devi ND, Arumugam T. Salinity tolerance in vegetable crops: a review. J Pharmacogn Phytochem. 2019;8(3):2717-21.
  20. 20. FAO (Food and Agricultural Organization). Salt affected soils and their management. FAO Soils Bulletin 39. Rome: FAO; 1988.
  21. 21. USSLS (United States Salinity Laboratory Staff). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook 60. Washington (DC): USDA; 1954.
  22. 22. Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, et al. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. Planta. 2022;255(3):68. https://doi.org/10.1007/s00425-022-03845-y
  23. 23. Fang S, Hou X, Liang X. Response mechanisms of plants under saline-alkali stress. Front Plant Sci. 2021;12:1049.
  24. 24. Shams M, Yildirim E, Ekinci M, Turan M, Dursun A, Parlakova F, et al. Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hort Environ Biotechnol. 2016;57(3):225-31. https://doi.org/10.1007/s13580-016-0021-0
  25. 25. Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, et al. Targeting salt stress coping mechanisms for stress tolerance in Brassica: a research perspective. Plant Physiol Biochem. 2021;158:53-64. https://doi.org/10.1016/j.plaphy.2020.11.044
  26. 26. Machado RMA, Serralheiro RP. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. 2017;3(2):30. https://doi.org/10.3390/horticulturae3020030
  27. 27. Giordano M, Petropoulos SA, Cirillo C, Rouphael Y. Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae. 2021;7(5):107. https://doi.org/10.3390/horticulturae7050107
  28. 28. Dong X, Sun L, Guo J, Liu L, Han G, Wang B. Exogenous boron alleviates growth inhibition by NaCl stress by reducing Cl uptake in Beta vulgaris. Plant Soil. 2021;464(1):423-39. https://doi.org/10.1007/s11104-021-04946-5
  29. 29. Azizi F, Farsaraei S, Moghaddam M. Application of exogenous ascorbic acid modifies growth and pigment content of Calendula officinalis L. flower heads of plants exposed to NaCl stress. J Soil Sci Plant Nutr. 2021;21(4):2803-14. https://doi.org/10.1007/s42729-021-00567-0
  30. 30. Shams M, Yildirim E. Variations in response of CaPAO and CaATG8c genes, hormone, photosynthesis and antioxidative system in pepper genotypes under salinity stress. Sci Hort. 2021;282:110041. https://doi.org/10.1016/j.scienta.2021.110041
  31. 31. Dadasoglu E, Ekinci M, Kul R, Shams M, Turan M, Yildirim E. Nitric oxide enhances salt tolerance through regulating antioxidant enzyme activity and nutrient uptake in pea. Legume Res. 2021;44(1):41-5. https://doi.org/10.18805/LR-540
  32. 32. Khalil R, Elsayed N, Khan TA, Yusuf M. Potassium: a potent modulator of plant responses under changing environment. In: Role of Potassium in Abiotic Stress. Springer; 2022. p. 221-47.
  33. 33. Nieves-Cordones M, Azeem F, Long Y, Boeglin M, Duby G, Mouline K, et al. Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit AtKC1. Plant Cell. 2022;34(5):2019-37. https://doi.org/10.1093/plcell/koac038
  34. 34. Yang X, Han Y, Hao J, Qin X, Liu C, Fan S. Exogenous spermidine enhances the photosynthesis and ultrastructure of lettuce seedlings under high-temperature stress. Sci Hort. 2022;291:110570. https://doi.org/10.1016/j.scienta.2021.110570
  35. 35. Ansari HH, Siddiqui A, Wajid D, Tabassum S, Umar M, Siddiqui ZS. Profiling of energy compartmentalization in photosystem II (PSII), light harvesting complexes and specific energy fluxes of primed maize cultivar (P1429) under salt stress environment. Plant Physiol Biochem. 2022;170:296-306. https://doi.org/10.1016/j.plaphy.2021.12.015
  36. 36. Dhokne K, Pandey J, Yadav RM, Ramachandran P, Rath JR, Subramanyam R. Change in the photochemical and structural organization of thylakoids from pea (Pisum sativum) under salt stress. Plant Physiol Biochem. 2022;177:46-60. https://doi.org/10.1016/j.plaphy.2022.02.004
  37. 37. Shams M, Ekinci M, Ors S, Turan M, Agar G, Kul R, et al. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol Mol Biol Plants. 2019;25(5):1149-61. https://doi.org/10.1007/s12298-019-00692-2
  38. 38. Ranjan A, Sinha R, Sharma TR, Pattanayak A, Singh AK. Alleviating aluminum toxicity in plants: implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiol Plant. 2021;173(4):1765-84. https://doi.org/10.1111/ppl.13382
  39. 39. Sahin U, Ekinci M, Ors S, Turan M, Yildiz S, Yildirim E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci Hort. 2018;240:196-204. https://doi.org/10.1016/j.scienta.2018.06.016
  40. 40. Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci Hort. 2020;272:109537. https://doi.org/10.1016/j.scienta.2020.109537
  41. 41. Konrad M. Principles of plant nutrition. 5th ed. Giessen, Germany: Justus Liebig University, School of Biology; 2001.
  42. 42. Sun B, Zhou S, Zhao Q. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in sub-tropical China. Geoderma. 2003;115(6):85-99. https://doi.org/10.1016/S0016-7061(03)00078-8
  43. 43. Fayed I, Rateb K. Long-term cropping system impacts on some physical and chemical properties and fertility status in alluvial soils of Egypt. Soil Water Environ. 2013;58(1):9-18.
  44. 44. Qi B, Darilek J, Huang B, Zhao Y, Sun W. Evaluating soil quality indices in an agricultural region of Jiangsu Province of China. Geoderma. 2009;149(3-4):325-34. https://doi.org/10.1016/j.geoderma.2008.12.015
  45. 45. Molatakgosi G. Impact of in-field irrigation management by Botswana cabbage farmers on soil salinity [Dissertation]. Cranfield University, UK; 2005.
  46. 46. Mali B, Thengal S, Pate N. Physico-chemical characteristics of salt affected soil from Barhanpur, M.S., India. Ann Biol Res. 2012;3(8):4091-3.
  47. 47. Ghanbari M, Bahmanyar S, Gilani F, Raiesi M. The effect of different levels of saline irrigation water and some amendments on microbial respiration, and acid and alkaline phosphatase activities in the rhizosphere soil during vegetative growth of soybean. J Water Soil Conserv. 2012;19(3):63-76.
  48. 48. Rengasamy P. World salinisation with emphasis on Australia. J Exp Bot. 2006;57(5):1017-23. https://doi.org/10.1093/jxb/erj108
  49. 49. Bhadauria S, Sengar M, Dheeraj M, Singh D, Kushwah B. Sustainable land use planning through utilization of alkaline wasteland by biotechnological intervention. Am Eurasian J Agric Environ Sci. 2010;9(3):325-37.
  50. 50. Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001;24:1337-44. https://doi.org/10.1046/j.1365-3040.2001.00778.x
  51. 51. Rai AC, Rai A, Shah K, Singh M. Engineered BcZAT12 gene mitigates salt stress in tomato seedlings. Physiol Mol Biol Plants. 2021;27:535-41. https://doi.org/10.1007/s12298-021-00948-w
  52. 52. Nahakpam S, Shah K. Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul. 2011;63:23-35. https://doi.org/10.1007/s10725-010-9508-3
  53. 53. Flowers TJ, Flowers SA. Why does salinity pose such a difficult problem for plant breeders? Agric Water Manage. 2005;78:15-24. https://doi.org/10.1016/j.agwat.2005.04.015
  54. 54. Sharma P. Amendments in saline soils for improved growth and yield in plants. 2016.
  55. 55. Rhoades JD. Electrical conductivity methods for measuring and mapping soil salinity. In: Sparks DL, editor. Advances in Agronomy. Vol. 49. San Diego: Academic Press; 1993. p. 201-51.
  56. 56. Maas EV. Salt tolerance of plants. Appl Agric Res. 1986;1:12-26.
  57. 57. Shannon MC, Grieve CM, Francois LE. Whole-plant response to salinity. In: Wilkinson RE, editor. Plant-environment interactions. New York: Marcel Dekker; 1994. p. 199-244.
  58. 58. Paksoy M, Turkmen O, Dursun A. Effects of potassium and humic acid on emergence, growth and nutrient contents of Abelmoschus esculentus L. seedling under saline soil conditions. Afr J Biotechnol. 2010;9:5343-6.
  59. 59. Abbas W, Ashraf M, Akram NA. Alleviation of stressed-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci Hort. 2010;125:188-95. https://doi.org/10.1016/j.scienta.2010.04.008
  60. 60. Tantawy AS, Abdel-Mawgoud AMR, El-Nemr MA, Chamoun YG. Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Eur J Sci Res. 2009;30:484-94.
  61. 61. Shahba Z, Baghizadeh A, Ali VSM, Ali Y, Mehdi Y. The salicylic acid effect on the tomato (Lycopersicon esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J Biophys Struct Biol. 2010;2:35-41.
  62. 62. Etehadnia M, Schoenau J, Waterer D, Karen T. The effect of CaCl2 and NaCl salt acclimation in stress tolerance and its potential role in ABA and scion/rootstock-mediated salt stress responses. Plant Stress. 2010;4:72-81.
  63. 63. Velitchkova M, Fedina L. Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica. 1998;35:89-97. https://doi.org/10.1023/A:1006878016556
  64. 64. Yadav BR, Paliwal KV. Response of cauliflower to nitrogen and phosphorus fertilization on irrigation with saline waters. Veg Sci. 1990;17:1-6.
  65. 65. del Amor FM, Cuadra-Crespo P. Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul. 2010;63:55-62. https://doi.org/10.1007/s10725-010-9511-8
  66. 66. Alam MZ, Carpenter-Boggs L, Mitra S, et al. Effect of salinity intrusion on food crops, livestock, and fish species at Kalapara Coastal Belt in Bangladesh. J Food Qual. 2017;2017:1-23. https://doi.org/10.1155/2017/2045157
  67. 67. Gebreyess BF, Abayineh A. Water harvesting technologies in semi-arid and arid areas. J Degrad Min Land Manag. 2019;7(1):1921-8. https://doi.org/10.15243/jdmlm.2019.071.1921
  68. 68. Esenov PE, Redjepbaev KR. The reclamation of saline soils. In: Babaev AG, editor. Desert problems and desertification in Central Asia. Berlin: Springer; 1999. https://doi.org/10.1007/978-3-642-60128-6_15
  69. 69. Kaledhonkar MJ, Meena BL, Sharma PC. Reclamation and nutrient management for salt-affected soils. Indian J Fert. 2019;15(5):566-75.
  70. 70. Ben GA, Ityel E, Dudley L, Cohen S, Yermiyahu U, Presnov E, et al. Effect of irrigation water salinity on transpiration and leaching requirements: a case study of bell peppers. Agric Water Manage. 2008;95:587-97. https://doi.org/10.1016/j.agwat.2007.12.008
  71. 71. Shahid SA, Zaman M, Heng L. Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-96190-3_2
  72. 72. Bar Y, Apelbaum A, Kafkafi U, Goren R. Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. J Plant Nutr. 1997;20(6):715-31. https://doi.org/10.1080/01904169709365288
  73. 73. Karaivazoglou NA, Papakosta DK, Divanidis S. Effect of chloride in irrigation water and form of nitrogen fertilizer on Virginia (flue-cured) tobacco. Field Crops Res. 2005;92(1):61-74. https://doi.org/10.1016/j.fcr.2004.09.006
  74. 74. Zhang QT, Inoue M, Inosako K, Irshad M, Kondo K, Qio GY, Wang SP. Ameliorative effect of mulching on water use efficiency of Swiss chard and salt accumulation under saline irrigation. J Food Agric Environ. 2008;6:480-5.
  75. 75. Rubio JS, Garcia-Sanchez F, Rubio F, Martinez V. Yield, blossom end rot incidence and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca²+ fertilization. Sci Hort. 2009;119:79-87. https://doi.org/10.1016/j.scienta.2008.07.009
  76. 76. De Oliveira Oliveira FRAFAD, Medeiros JFD, Sousa FLD, Freir AG. Phosphorus-salinity interaction in radish. Rev Cienc Agron. 2010;41:519-26.
  77. 77. Rausch T, Wachter A. Sulfur metabolism: a versatile platform for launching defense operations. Trends Plant Sci. 2005;10:503-9. https://doi.org/10.1016/j.tplants.2005.08.006
  78. 78. An P, Inanaga S, Lux A, Li XJ, Enji, Zhu NW. Interactive effects of salinity and air humidity on two tomato cultivars differing in salt tolerance. J Plant Nutr. 2005;28:459-73.
  79. 79. Edelstein M, Plaut Z, Ben-Hur M. Mechanism responsible for restricted boron concentration in plant shoots grafted on pumpkin rootstocks. Isr J Plant Sci. 2011;59:207-15. https://doi.org/10.1560/IJPS.59.2-4.207
  80. 80. Sivritepe HO, Sivritepe N, Eris A, Turhan E. The effect of NaCl pre-treatments on salt tolerance of melon grown under long-term salinity. Sci Hort. 2005;106:568-81. https://doi.org/10.1016/j.scienta.2005.05.011
  81. 81. Elwan MWM. Ameliorative effects of di-potassium hydrogen orthophosphate on salt-stressed eggplants. J Plant Nutr. 2010;33:1593-604. https://doi.org/10.1080/01904167.2010.496884
  82. 82. Takagi M, El-Shemi H, Sassaki S, Toyama S, Kanai S, Saneoka H, et al. Elevated CO2 concentration alleviates salinity stress in tomato plants. Acta Agric Scand B Soil Plant Sci. 2009;59:87-96. https://doi.org/10.1080/09064710801932425
  83. 83. Jobbágy EG, Jackson RB. Groundwater and soil chemical changes under phreatophytic tree plantations. J Geophys Res. 2007;112(G2). https://doi.org/10.1029/2006jg000246
  84. 84. Abrol IP, Yadav JSP, Massoud FI. Salt-affected soils and their management. FAO Soils Bull. 1988;39.
  85. 85. Singh G, Bundela DS, Sethi M, Lal K, Kamra SK. Remote sensing and geographic information system for appraisal of salt-affected soils in India. J Environ Qual. 2010;39:5-15. https://doi.org/10.2134/jeq2009.0032
  86. 86. Galvani A. The challenge of the food sufficiency through salt-tolerant crops. Rev Environ Sci Biotechnol. 2006;6(1-3):3-16. https://doi.org/10.1007/s11157-006-0010-3
  87. 87. Brady N, Weil R. The nature and properties of soils. 13th ed. USA: Macmillan; 2002.
  88. 88. Liluchli A, Epstein E. Plant responses to saline and sodic conditions. In: Tanji KK, editor. Agricultural salinity assessment and management. ASCE Manuals Reports Eng Pract No. 71. New York: ASCE; 1996. p. 113-37.
  89. 89. Rengasamy P. World salinization with emphasis on Australia. J Exp Bot. 2006;57(5):1017-23. https://doi.org/10.1093/jxb/erj108
  90. 90. Pal DK, Srivastava P, Durge SL, Bhattacharyya T. Role of microtopography in the formation of sodic soils in the semi-arid part of the Indo-Gangetic Plains, India. 2003.
  91. 91. Chhabra R. Classification of salt-affected soils. Arid Land Res Manag. 2004;19(1):61-79. https://doi.org/10.1080/15324980590887344
  92. 92. Abrol IP, Bhumbla DR. Crop response to differential gypsum applications in a highly sodic soil and the tolerance of several crops to exchangeable sodium under field conditions. Soil Sci. 1979;127(2):79-85.
  93. 93. Jumberi A, Oka M, Fujiyama H. Response of vegetable crops to salinity and sodicity in relation to ionic balance and ability to absorb microelements. Soil Sci Plant Nutr. 2002;48(2):203-9. https://doi.org/10.1080/00380768.2002.10409192
  94. 94. Phogat V, Sharma SK, Kumar S, Satyavan, Gupta SK. Vegetable cultivation with poor quality water. Tech Bull. 2010;72. Department of Soil Science, CCS Haryana Agricultural University, Hisar.
  95. 95. Singh J, Ashok V, Chauhan N. Effect of pyrite on growth and yield of pearl millet-wheat cropping system under sodic environment. J Agric Phys. 2009;9:24-7.
  96. 96. Swarup A. Effect of gypsum, green manure, farmyard manure and zinc fertilization on the zinc, iron and manganese nutrition of wetland rice on a sodic soil. J Indian Soc Soil Sci. 1982;39:530-6.
  97. 97. Sharma DK, Singh A. Salinity research in India: achievements, challenges and future prospects. Water Energy Int. 2015;58:35-45.
  98. 98. Yunusa IAM, Eamus D, DeSilva DL, Murray BR, Burchett MD, Skilbeck GC, et al. Fly-ash: an exploitable resource for management of Australian agricultural soils. Fuel. 2006;85:2337-44. https://doi.org/10.1016/j.fuel.2006.01.033
  99. 99. Chen L, Dick WA. Gypsum as an agricultural amendment: general use guidelines. The Ohio State University; 2011.
  100. 100. Tyagi NK. Managing saline and alkali water for higher productivity. In: Kijne JW, Barker R, Molden D, editors. Water productivity in agriculture: limits and opportunities for improvement. Wallingford: CABI Publishing; 2003. p. 69-87. https://doi.org/10.1079/9780851996691.0069
  101. 101. Yadav AC, Sharma SK, Kapoor AK, Singh A, Mangal JL. Response of potato to sodic water irrigation with and without amendments. Haryana J Hort Sci. 2002;31(1&2):129-32.
  102. 102. Alcordo IS, Rechcigl JE. Phosphogypsum in agriculture: a review. Adv Agron. 1993;49:55-118. https://doi.org/10.1016/S0065-2113(08)60793-2
  103. 103. Agassi M, Shainberg I, Morin J. Infiltration and runoff in wheat fields in the semi-arid region of Israel. Geoderma. 1985;36:263-76. https://doi.org/10.1016/0016-7061(85)90007-2
  104. 104. Kaushik A, Nisha R, Jagjeet K, Kaushik CP. Impact of long- and short-term irrigation of a sodic soil with distillery effluent in combination with bio amendments. Bioresour Technol. 2005;96:1860-6. https://doi.org/10.1016/j.biortech.2005.01.031
  105. 105. Chatterjee AK. Indian fly ashes: their characteristics and potential for mechanochemical activation for enhanced usability. J Mater Civ Eng. 2011;23:783-8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000279
  106. 106. Kumar D, Singh B. The use of coal fly ash in sodic soil reclamation. Land Degrad Dev. 2003;14:285-99. https://doi.org/10.1002/ldr.557
  107. 107. Muhammad D, Khattak RA. Growth and nutrient concentrations of maize in pressmud-treated saline-sodic soils. Soil Environ. 2009;28:145-55.
  108. 108. Chand M, Randhawa NS, Sinha MK. Effect of gypsum, pressmud, fulvic acid and zinc sources on yield and zinc uptake by rice crop in a saline-sodic soil. Plant Soil. 1980;55:17-24. https://doi.org/10.1007/BF02149704
  109. 109. Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C. Effectiveness of compost use in salt-affected soil. J Hazard Mater. 2009;171:29-37. https://doi.org/10.1016/j.jhazmat.2009.05.132
  110. 110. Mulumba LN, Lal R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008;98:106-11. https://doi.org/10.1016/j.still.2007.10.011
  111. 111. Pang HC, Li YY, Yang JS, Liang YS. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Agric Water Manage. 2010;97:1971-7. https://doi.org/10.1016/j.agwat.2009.08.020
  112. 112. Tejedor M, Jiménez CC, Díaz F. Use of volcanic mulch to rehabilitate saline-sodic soils. Soil Sci Soc Am J. 2003;67:1856-61. https://doi.org/10.2136/sssaj2003.1856
  113. 113. Sharma DB, Swarup A. Effects of short-term flooding on growth, yield and mineral composition of wheat on sodic soil under field conditions. Plant Soil. 1988;107:137-43. https://doi.org/10.1007/BF02371555
  114. 114. Tyagi NK. Effect of land surface uniformity on some economic parameters of irrigation in sodic soils under reclamation. Irrig Sci. 1984;5:151-60. https://doi.org/10.1007/BF00264604
  115. 115. Sharma DK, Kumar A, Singh KN. Effect of irrigation scheduling on growth, yield and evapotranspiration of wheat in sodic soils. Agric Water Manage. 1990;18:267-76. https://doi.org/10.1016/0378-3774(90)90048-4
  116. 116. Sharma PC, Thimappa K, Kaledhonkar MJ, Chaudhari SK. Reclamation of alkali soils through gypsum technology. ICAR-CSSRI/Karnal/Technology Folder/2016/01. 2016. p. 4.
  117. 117. Yadav MS, Yadav PPS, Yaduvanshi M, Verma D, Singh AN. Sustainability assessment of sodic land reclamation using remote sensing and GIS. J Indian Soc Remote Sens. 2010;38:269-78. https://doi.org/10.1007/s12524-010-0017-7
  118. 118. Gathala MK, Kumar V, Sharma PC, Saharawat YS, Jat HS, Singh M, et al. Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India. Agric Ecosyst Environ. 2013;177: 85-97. https://doi.org/10.1016/j.agee.2013.06.002

Downloads

Download data is not yet available.