Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Integrative potential of Palmyrah (Borassus flabellifer) in climate mitigation and pharmaceutical innovation

DOI
https://doi.org/10.14719/pst.9103
Submitted
25 April 2025
Published
13-08-2025 — Updated on 28-08-2025

Abstract

Borassus flabellifer L. the state tree of Tamil Nadu, offers a wide range of ecological, medicinal, economical and sociological benefits. This hardy palm species is highly resilient, capable of withstanding adverse climatic conditions and natural calamities. Nearly, every part of the Palmyrah palm is utilized, making it one of the most resourceful species. Importantly, it plays a role in mitigating climate change through significant carbon sequestration. The cultivation and maintenance of Palmyrah palm improves the local, National and International ecosystem through carbon sequestration. Furthermore, B. flabellifer exhibits various pharmaceutical and nutraceutical activities like anti-inflammatory, anti-arthritic, cytotoxic, antibacterial, analgesic, hypoglycaemic, antipyretic and antioxidant activity. This review provides an overview of Palmyrah’s potential contributions to climate change mitigation and its pharmaceutical benefits.

References

  1. 1. Sankaralingam A, Hemalatha G, Ali AM. A treatise on palmyrah: All India Co-ordinated Research Project, Agricultural College & Research; 1999.
  2. 2. Prasad AB, Arunkumar A, Vignesh S, Chidanand D, Baskaran N. Exploring the nutritional profiling and health benefits of Borassus flabellifer palm haustorium. South African Journal of Botany. 2022;151:228–37. https://doi.org/10.1016/j.sajb.2022.01.027
  3. 3. Gnanavelrajah N, Theepika S, Karthigesu J, Raveendran S. Borassus flabellifer palm land use system: A potential key tool for enhancing carbon stock and floristic diversity in a dry zone tropical landscape. Trees, Forests and People. 2025;20:100827. https://doi.org/10.1016/j.tfp.2025.100827
  4. 4. Patil AY, Banapurmath NR, Sunal S. Review on period of biodegradability for natural fibers embedded polylactic acid biocomposites. In: Biodegradation, pollutants and bioremediation principles. CRC Press; 2021. p. 234–71. https://doi.org/10.1201/9780429293931-13
  5. 5. Vengaiah P, Kaleemullah S, Madhava M, Mani A, Sreekanth B. Borassus flabellifer fruit: Source of immunity and healthy food: A review. Pharma Innovation. 2021;10(11):1920–5.
  6. 6. Ariyasena DD, Jansz ER, Abeysekera AM. Some studies directed at increasing the potential use of Borassus flabellifer fruit pulp. Journal of the Science of Food and Agriculture. 2001;81(14):1347–52. https://doi.org/10.1002/jsfa.943
  7. 7. Vengaiah P, Kaleemullah S, Madhava M, Mani A, Sreekanth B. Some physical properties of Borassus flabellifer fruits. Current Journal of Applied Science and Technology. 2021;40(24):18–25. https://doi.org/10.9734/cjast/2021/v40i2431498
  8. 8. Wickramasuriya AM, Dunwell JM. Cacao biotechnology: current status and future prospects. Plant Biotechnology Journal. 2018;16(1):4–17. https://doi.org/10.1111/pbi.12848
  9. 9. Behera S, Nayak B. Phytochemical constituents and nutritional potential of palmyra palm: a review. The Review of Contemporary Scientific and Academic Studies. 2022;2(12). https://doi.org/10.55454/rcsas.2.12.2022.003
  10. 10. Ravindran C, Balakumbahan MMR, Kavitha M. Palmyrah: A crop for future.
  11. 11. Franklin K, Khalsa M, Hunter S, Kropidlowski S, Carr P, Wegmann A. Conservation management of an abandoned copra plantation at Palmyra Atoll, Northern Line Islands, Pacific Ocean. Conservation Evidence. 2024;21:1. https://doi.org/10.52201/CEJ21/WTTF3018
  12. 12. Sivaji M, Ratnarajah V, Aheeshan B, Kumar A. Physicochemical and nutritional characterization of palmyrah (Borassus flabellifer) pith waste: A study to explore potential agricultural and industrial applications. Journal of Agricultural Sciences–Sri Lanka. 2023;18(3). https://doi.org/10.4038/jas.v18i3.9724
  13. 13. Srivastava A, Bishnoi S, Sarkar P, Anuradha Srivastava S. Value addition in palmyrah (Borassus flabellifer): A potential strategy for livelihood security and poverty alleviation. Rashtriya Krishi. 2017;12(1):110–2. https://doi.org/10.15740/HAS/TAJH/12.1/160-164
  14. 14. Hemstock SL, Chandra VV, Manuella-Morris T. Potential of coconut palm (Cocos nucifera L.) in resilient development solutions bioethanol. In: Cultivation for climate change resilience. Vol. 1. CRC Press; 2023. p. 87–108. https://doi.org/10.1201/9780429055584-6
  15. 15. Assavarak P, Seeprasert P, Jirapornvaree I. Climate-smart integration of rice and local palm production: enhancing resilience and sustainability in tropical agroecosystems. New Horizons. 2024;18(2):42–64. https://doi.org/10.29270/NH.18.2(36).03
  16. 16. Ilakiya T, Parameswari E, Swarnapriya R, Yazhini G, Kalaiselvi P, Davamani V, et al. Unlocking the carbon sequestration potential of horticultural crops. Plants. 2024;10(3):65. https://doi.org/10.3390/c10030065
  17. 17. Kaur P, Sandhu S, Gill K. Proceedings of virtual national conference on strategic reorientation for climate smart agriculture (V-Agmet 2021). Vol. 1. https://doi.org/10.13140/RG.2.2.23086.43848
  18. 18. Gnanavelrajah N, Sathasivam T, Jeyavanan K, Raveendran S. A sustainable form of land use under Borassus flabellifer: A case study in Jaffna district of Sri Lanka. Sustainable Land Use and Urban Development. 2023;27. https://doi.org/10.31357/fesympo.v27.7131
  19. 19. Borbon SMC, Medina MAP, Patricio JHP, Toledo-Bruno AG. Carbon sequestration potential of oil palm plantations in Southern Philippines. BioRxiv. 2020:2020.04.14.041822. https://doi.org/10.1101/2020.04.14.041822
  20. 20. Chaudhry S, Arora P, editors. Forest ecosystem: carbon sequestration and role in Indian economy. National Seminar on Biodiversity, Ecosystems and Climate Change: the Challenges Ahead held at the National Institute of Ecology, Jaipur, India; 2010.
  21. 21. Longley-Wood K, Engels M, Lafferty KD, McLaughlin JP, Wegmann A. Transforming Palmyra Atoll to native-tree dominance will increase net carbon storage and reduce dissolved organic carbon reef runoff. PLoS One. 2022;17(1):e0262621. https://doi.org/10.1371/journal.pone.0262621
  22. 22. Aroonsrimorakot S, Bhaktikul K, Metadilogkul O. Palmyra Palm and the Protection of Landslide along the Canal. Asian Health, Science and Technology Reports. 2021;29(1):121-31. https://doi.org/10.14456/nujst.2021.10
  23. 23. Masilamani P, Indurani C, Venkatesan S. Influence of media and sowing condition on field emergence of Palmyrah (Borassus flabellifer L.). Madras Agriculture Journal. 2023;110(4/6):200757. https://doi.org/10.29321/MAJ.10.200757
  24. 24. Alam M, Furukawa Y. Ethnobotany and traditional management of drought tolerant tree species in homestead forests of Bangladesh. Ethnobotanical Leaflets. 2008;12:1168-71.
  25. 25. Ranjani M, Meichander P, Nandhini S. Sustainable Palmyrah farming: nurturing nature’s bounty for a harmonious future. The Agriculture Magazine. 2023;2(12):154-7.
  26. 26. Kim K, Kim H, Ho Park S, Joon Lee S. Hydraulic strategy of cactus trichome for absorption and storage of water under arid environment. Frontiers in Plant Science. 2017;8:1777. https://doi.org/10.3389/fpls.2017.01777
  27. 27. Shrestha N, Hu H, Shrestha K, Doust AN. Pearl millet response to drought: A review. Frontiers in Plant Science. 2023;14:1059574. https://doi.org/10.3389/fpls.2023.1059574
  28. 28. Krishnaveni TS, Arunachalam R, Chandrakumar M, Parthasarathi G, Nisha R. Potential review on palmyra (Borassus flabellifer L.). Advances in Research. 2020;21(9):29-40. https://doi.org/10.9734/air/2020/v21i930229
  29. 29. Jaradat AA. Biodiversity, genetic diversity, and genetic resources of date palm. In: Date palm genetic resources and utilization. Vol. 1. Africa and the Americas. Dordrecht: Springer; 2015. p. 19-71. https://doi.org/10.1007/978-94-017-9694-1_2
  30. 30. Baskaran K, Mallikarachchi HE, Jayasekara MJPLM, Madushanka GAT, Madushanka G. Study on palmyrah as a material for construction. Journal of Construction Engineering. 2014;2014(1):589646. https://doi.org/10.1155/2014/589646
  31. 31. Rao MCS, Swami DV, Ashok P, Nanda SP, Rao BB. Scope, nutritional importance and value addition in palmyrah (Borassus flabellifer L.): An under exploited crop. In: Bioactive compounds - biosynthesis, characterization and applications. Vol. 12. IntechOpen; 2021. p. 207-22.
  32. 32. Goff JR, Goff J, Dudley WC. Tsunami: The World's Greatest Waves. Oxford University Press; 2021. https://doi.org/10.1093/oso/9780197546123.001.0001
  33. 33. Nagendra H, Mundoli S. Cities and canopies: trees in Indian cities. Penguin Random House India Private Limited; 2019.
  34. 34. Siju S, Sabu K. Genetic resources of Asian palmyrah palm (Borassus flabellifer L.): a comprehensive review on diversity, characterization and utilization. Plant Genetic Resources. 2020;18(6):445-53. https://doi.org/10.1017/S1479262120000477
  35. 35. Govindaraj BB, Palsamy G, Senthil Kumar P, Mariyappan R, Govindaraj MP, Rangasamy G. Application of nitric acid modified palmyra palm male inflorescence activated carbon for effective removal of methylene blue dye from the aquatic environment. Adsorption Science & Technology. 2024;42:02636174241256850. https://doi.org/10.1177/02636174241256850
  36. 36. Bagherzadeh M, Salehi G, Rabiee N. Rapid and efficient removal of methylene blue dye from aqueous solutions using extract-modified Zn–Al LDH. Chemosphere. 2024;350:141011. https://doi.org/10.1016/j.chemosphere.2023.141011
  37. 37. Jamkhande PG, Suryawanshi VA, Kaylankar TM, Patwekar SL. Biological activities of leaves of ethnomedicinal plant, Borassus flabellifer Linn. (Palmyra palm): An antibacterial, antifungal and antioxidant evaluation. Bulletin of Faculty of Pharmacy, Cairo University. 2016;54(1):59-66. https://doi.org/10.1016/j.bfopcu.2016.01.002
  38. 38. Allwin S, Lititia S, Cherian SA, Shelton BD, Jebitta SR. A review on nutritive, medicinal and commercial aspects of Asian Palmyra palm fruit. Songklanakarin Journal of Science & Technology. 2024;46(1).
  39. 39. Jansz E, Wickremasekara NT, Sumuduni K. A review of the chemistry and biochemistry of seed shoot flour and fruit pulp of the palmyrah palm (Borassus flabellifer L). Journal of the National Science Foundation of Sri Lanka. 2002;30(1-2). https://doi.org/10.4038/jnsfsr.v30i1-2.2562
  40. 40. Sahni C, Shakil NA, Jha V, Gupta RK. Screening of nutritional, phytochemical, antioxidant and antibacterial activity of the roots of Borassus flabellifer (Asian Palmyra Palm). Journal of Pharmacognosy and Phytochemistry. 2014;3(4):58-68.
  41. 41. Shanmugalingam V, Sathasivampillai SV, Srivijeindran S. Pharmacological activities of Borassus flabellifer L. extracts and isolated compounds. International Journal of Innovative Research and Reviews. 2021;5(2):23-31.
  42. 42. Renuka K, Parvathi N, Subramanian SP. Biochemical studies on the antidiabetic properties of immature palmyra palm fruits studied in high fat diet fed-low dose streptozotocin induced type 2 diabetes in rats. GSC Biological and Pharmaceutical Sciences. 2020;12(3):223-35. https://doi.org/10.30574/gscbps.2020.12.3.0304
  43. 43. Rahman SS, Yasmin N, Kamruzzaman M, Islam MR, Karim MR, Rouf SM. Anti-hyperglycemic effect of the immature endosperm of sugar palm (Borassus flabellifer) fruit on type 2 diabetes mellitus patients-a case study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(5):1317-22. https://doi.org/10.1016/j.dsx.2020.06.055
  44. 44. Mariselvam R, Ignacimuthu S, Ranjitsingh A, Mosae SP. An insight into leaf secretions of Asian palmyra palm: A wound healing material from nature. Materials Today: Proceedings. 2021;47:733-8. https://doi.org/10.1016/j.matpr.2020.05.393
  45. 45. Pammi N, Bhukya KK, Lunavath RK, Bhukya B. Bioprospecting of Palmyra palm (Borassus flabellifer) nectar: unveiling the probiotic and therapeutic potential of the traditional rural drink. Frontiers in Microbiology. 2021;12:683996. https://doi.org/10.3389/fmicb.2021.683996
  46. 46. Sangeetha S, Thuraisingam S, Jayawardane J, Srivijeindran S. A novel approach to the formulation of an encapsulated bioactive powder from palmyrah (Borassus flabellifer L) fruit pulp for nutraceutical applications. Food Chemistry Advances. 2023;3:100405. https://doi.org/10.1016/j.focha.2023.100405
  47. 47. Aththanayaka S, Thiripuranathar G, Ekanayake S. Comparative evaluation of the multifunctional biological activities of palmyra extract-mediated Ag/Ag2O, ZnO, and Ag/Ag2O/ZnO nanomaterials. Waste and Biomass Valorization. 2025;16(2):847-69. https://doi.org/10.1007/s12649-024-02711-0
  48. 48. Narayanankutty A, Job JT, Kuttithodi AM, Sasidharan A, Benil P, Ramesh V, et al. Proximate composition, antioxidant, anti-inflammatory and anti-diabetic properties of the haustorium from Coconut (Cocos nucifera L.) and Palmyra palm (Borassus flabellifer L.). Journal of King Saud University-Science. 2023;35(1):102404. https://doi.org/10.1016/j.jksus.2022.102404
  49. 49. Thi Le DH, Chiu C-S, Chan Y-J, Wang C-CR, Liang Z-C, Hsieh C-W, et al. Bioactive and physicochemical characteristics of natural food: Palmyra palm (Borassus flabellifer Linn.) syrup. Biology. 2021;10(10):1028. https://doi.org/10.3390/biology10101028
  50. 50. Paschapur MS, Patil S, Patil SR, Kumar R, Patil M. Evaluation of the analgesic and antipyretic activities of ethanolic extract of male flowers (inflorescences) of Borassus flabellifer L. (Arecaceae). International Journal of Pharmacy and Pharmaceutical Sciences. 2009;1(2):98-106.
  51. 51. Prasad AB, Vignesh S, Elumalai A, Anandharaj A, Chidanand D, Baskaran N. Nutritional and pharmacological properties of palmyra palm. Food and Humanity. 2023;1:817-25. https://doi.org/10.1016/j.foohum.2023.07.030
  52. 52. Keerthi A, Ekanayake S, Jansz E. A review of the neurotoxic effect of palmyrah flour. International Journal of Food Sciences and Nutrition. 2009;60(4):306-16. https://doi.org/10.1080/09637480903136675
  53. 53. Thuvaragan S, Jeyasinghe H, Murugananthan A. Comparative evaluation of in-vitro anthelmintic activity of sap, fruit bulb, and root of Borassus flabellifer. In: 2nd International Conference on Public Health and Well-being; 2021. p. 44-50 https:/doi.org/10.32789/publichealth.2021.1011
  54. 54. Singh R, Low ETL, Ooi LCL, Ong‐Abdullah M, Ting NC, Nookiah R, et al. Variation for heterodimerization and nuclear localization among known and novel oil palm SHELL alleles. New Phytologist. 2020;226(2):426-40. https://doi.org/10.1111/nph.16387
  55. 55. Mahilrajan S, Thuraisingam S, Prabagar J. Exploring the nutritional, health and economic potential of palmyrah fruit pulp. Food Chemistry Advances. 2025;6:100880. https://doi.org/10.1016/j.focha.2024.100880
  56. 56. Mahilrajan S, Nandakumar J, Kailayalingam R, Manoharan NA, SriVijeindran S. Screening the antifungal activity of essential oils against decay fungi from palmyrah leaf handicrafts. Biological Research. 2014;47:1-5. https://doi.org/10.1186/0717-6287-47-35
  57. 57. Aheeshan B, Maathumai S, Subajini M, Wijesinghe W, Sriwijendran S. Antioxidant activity and physicochemical analysis of coconut, kithul and palmyrah palm treacle. Journal of Science. 2022;13(1). https://doi.org/10.4038/jsc.v13i1.40
  58. 58. Sandhya S, Sudhakar K, Vinod K, Banji D. Formulation and Evaluation of a herbal cream incorporated with crude extracts of Borassus flabellifer intended for analgesic and anti inflammatory activity. International Journal of Pharmacology and Technology. 2010;2(2):67-74.
  59. 59. Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology. 2018;11(1):5. https://doi.org/10.2478/intox-2018-0001
  60. 60. Young HS, Raab TK, McCauley DJ, Briggs AA, Dirzo R. The coconut palm, Cocos nucifera, impacts forest composition and soil characteristics at Palmyra Atoll, Central Pacific. Journal of Vegetation Science. 2010;21(6):1058-68. https://doi.org/10.1111/j.1654-1103.2010.01219.x
  61. 61. Sartinah A, Nugrahani I, Ibrahim S, Anggadiredja K. Potential metabolites of Arecaceae family for the natural anti-osteoarthritis medicine: A review. Heliyon. 2022;8(12). https://doi.org/10.1016/j.heliyon.2022.e12039
  62. 62. Vijayakumary P, Jothiprakash G, Devi RP, Ramjani S, Chandrakumar K, Desikan R. Activated carbon synthesis from palmyra seed shell via physical and chemical activation methods. The pharma Innovation. 2023;12(12):25-9. https://doi.org/10.22271/tpi.2023.v12.i12a.24434

Downloads

Download data is not yet available.