Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Diversified legume-based crop rotation strategies for enhancing crop yield - A comprehensive review

DOI
https://doi.org/10.14719/pst.9104
Submitted
25 April 2025
Published
03-11-2025

Abstract

Crop rotation is a cornerstone practice in sustainable agriculture, it plays a crucial role in enhancing soil fertility, pest and disease management and overall crop productivity. This review is to optimize crop rotation strategies for improving the yield and sustainability of black gram (Vigna mungo L.), a pulse crop highly responsive to rotational practices. By synthesizing recent research, the study examines the effects of crop sequences, intercropping systems and legume-non-legume integrations on both crop productivity and soil health. Methodologically, it adopts a critical evaluation of existing literature to analyze the mechanisms underlying synergistic and antagonistic crop interactions, while also considering modern approaches such as precision agriculture and agroecological principles for refining crop rotation. The key conclusions highlight that crop rotation not only enhances soil fertility and productivity but also plays a pivotal role in pest and disease management. Furthermore, intercropping and integration with non-leguminous crops significantly improve black gram growth and yield while sustaining soil quality. The review emphasizes that precision-driven and ecologically grounded strategies present promising opportunities for fine-tuning rotations and future research to further adapt and refine these approaches for sustainable legume production.

References

  1. 1. Yates F. The analysis of experiments containing different crop rotations. Biometrics. 1954;10:324-46. https://doi.org/10.2307/3001589
  2. 2. Shen X, Liu X. Multiple cropping. Beijing: China Agriculture Press; 1983. p. 2-3
  3. 3. Stinner BR, Blair JM. Ecological and agronomic characteristics of innovative cropping systems. In: Sustainable agricultural systems. Boca Raton: CRC Press; 2020. p. 123-40. https://doi.org/10.1201/9781003070474-11
  4. 4. Zheng F, Liu X, Ding W, Song X, Li S, Wu X. Positive effects of crop rotation on soil aggregation and associated organic carbon are mainly controlled by climate and initial soil carbon content: a meta-analysis. Agriculture, Ecosystems & Environment. 2023;355:108600. https://doi.org/10.1016/j.agee.2023.108600
  5. 5. Li FR, Zhao SL, Geballe GT. Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of northwest China. Agriculture, Ecosystems & Environment. 2000;79(1):129-42. https://doi.org/10.1016/S0167-8809(99)00149-8
  6. 6. Ball BC, Bingham I, Rees RM, Watson CA, Litterick A. The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science. 2005;85(5):557-77. https://doi.org/10.4141/S04-078
  7. 7. Tooker JF, Frank SD. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology. 2012;49(5):974-85. https://doi.org/10.4141/S04-078
  8. 8. Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, et al. Robust cropping systems to tackle pests under climate change: a review. Agronomy for Sustainable Development. 2015;35:443-59. https://doi.org/10.1007/s13593-014-0275-9
  9. 9. Shah KK, Modi B, Pandey HP, Subedi A, Aryal G, Pandey M, et al. Diversified crop rotation: an approach for sustainable agriculture production. Advances in Agriculture. 2021:1-9. https://doi.org/10.1007/s13593-014-0275-9
  10. 10. Trenbath BR. Intercropping for the management of pests and diseases. Field Crops Research. 1993;34(3-4):381-405. https://doi.org/10.1016/0378-4290(93)90123-5
  11. 11. Van Bruggen AH, Gamliel A, Finckh MR. Plant disease management in organic farming systems. Pest Management Science. 2016;72(1):30-44. https://doi.org/10.1002/ps.4145
  12. 12. Cook RJ, Veseth RJ. Wheat health management. St. Paul: APS Press; 1991.
  13. 13. Kebede E. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems. 2021;5:767998. https://doi.org/10.3389/fsufs.2021.767998
  14. 14. Hoitink HAJ, Boehm MJ. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annual Review of Phytopathology. 1999;37(1):427-46. https://doi.org/10.1146/annurev.phyto.37.1.427
  15. 15. Liebman M, Dyck E. Crop rotation and intercropping strategies for weed management. Ecological Applications. 1993;3(1):92-122. https://doi.org/10.2307/1941795
  16. 16. Rana SS, Rana MC. Principles and practices of weed management. Palampur: Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya; 2016. p. 138.
  17. 17. Sharma G, Shrestha S, Kunwar S, Tseng TM. Crop diversification for improved weed management: a review. Agriculture. 2021;11(5):461. https://doi.org/10.3390/agriculture11050461
  18. 18. Yang X, Chen Y, Pacenka S, Gao W, Ma L, Wang G, et al. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. Journal of Hydrology. 2015;522:428-38. https://doi.org/10.1016/j.jhydrol.2015.01.010
  19. 19. Yang XL, Chen YQ, Steenhuis TS, Pacenka S, Gao WS, Ma L, et al. Mitigating groundwater depletion in North China Plain with cropping systems that alternate deep and shallow rooted crops. Frontiers in Plant Science. 2017;8:980. https://doi.org/10.3389/fpls.2017.00980
  20. 20. Ullah H, Santiago-Arenas R, Ferdous Z, Attia A, Datta A. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: a review. Advances in Agronomy. 2019;156:109-57. https://doi.org/10.1016/bs.agron.2019.02.002
  21. 21. Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, et al. Intercropping: a low input agricultural strategy for food and environmental security. Agronomy. 2021;11(2):343. https://doi.org/10.3390/agronomy11020343
  22. 22. Nadeem F, Nawaz A, Farooq M. Crop rotations, fallowing, and associated environmental benefits. In: Oxford Research Encyclopedia of Environmental Science. Oxford University Press; 2019. https://doi.org/10.1093/acrefore/9780199389414.013.197
  23. 23. Alhammad BA, Roy DK, Ranjan S, Padhan SR, Sow S, Nath D, et al. Conservation tillage and weed management influencing weed dynamics, crop performance, soil properties, and profitability in a rice–wheat–greengram system in the eastern Indo-Gangetic Plain. Agronomy. 2023;13(7):1953. https://doi.org/10.3390/agronomy13071953
  24. 24. Swaminathan R, Singh K, Nepalia V. Insect pests of greengram (Vigna radiata L. Wilczek) and their management. Agricultural Science. 2012;10:197-222. https://doi.org/10.5772/35176
  25. 25. Rana SS, Rana MC. Cropping system. Palampur: Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya; 2011. p. 80.
  26. 26. Dubey AK, Rao KK, Kumar S, Tamta M, Dwivedi SK, Kumar R, et al. Disease management in major field crops. In: Conservation agriculture for climate resilient farming & doubling farmers’ income. Training Manual No. 6. Patna: ICAR Research Complex for Eastern Region; 2019. p. 246.
  27. 27. Muthuram T, Krishnan R, Baradhan G. Productivity enhancement of irrigated greengram (Vigna radiata L.) through integrated weed management. Plant Archives. 2018;18(1):101-5.
  28. 28. Singh P, Kewat ML, Sapre N. Effect of tillage and weed management practices on productivity of greengram and physico-chemical properties of soil under soybean–wheat–greengram cropping system. JNKVV; 2020. p. 92.
  29. 29. Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11(5):1485. https://doi.org/10.3390/su11051485
  30. 30. Monteiro A, Santos S. Sustainable approach to weed management: the role of precision weed management. Agronomy. 2022;12(1):118. https://doi.org/10.3390/agronomy12010118
  31. 31. Tayyab M, Yang Z, Zhang C, Islam W, Lin W, Zhang H. Sugarcane monoculture drives microbial community composition, activity and abundance of agricultural-related microorganisms. Environmental Science and Pollution Research. 2021;28:48080-96. https://doi.org/10.1007/s11356-021-14033-y
  32. 32. Widyati E, Nuroniah HS, Tata HL, Mindawati N, Lisnawati Y, Darwo. Soil degradation due to conversion from natural to plantation forests in Indonesia. Forests. 2022;13(11):1913. https://doi.org/10.3390/f13111913
  33. 33. Meena RS. Phosphate solubilizing microorganisms, principles and application of microphos technology. Journal of Cleaner Production. 2017;145:157-8. https://doi.org/10.1016/j.jclepro.2017.01.024
  34. 34. Kumar S, Meena RS, Datta R, Verma SK, Yadav GS, Pradhan G, et al. Legumes for carbon and nitrogen cycling: an organic approach. In: Carbon and nitrogen cycling in soil. Singapore: Springer; 2020. p. 337-75. https://doi.org/10.1007/978-981-13-7264-3_10
  35. 35. Jena J, Maitra S, Hossain A, Pramanick B, Gitari HI, Praharaj S, et al. Role of legumes in cropping system for soil ecosystem improvement. In: Ecosystem services: types, management and benefits. New York: Nova Science Publishers; 2022. p. 1-22.
  36. 36. Meena RS, Das A, Yadav GS, Lal R, editors. Legumes for soil health and sustainable management. Springer Nature; 2018. https://doi.org/10.1007/978-981-13-0253-4
  37. 37. Zhao J, Chen J, Beillouin D, Lambers H, Yang Y, Smith P, et al. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nature Communications. 2022;13(1):4926. https://doi.org/10.1038/s41467-022-32464-0
  38. 38. Kumar S, Gopinath KA, Sheoran S, Meena RS, Srinivasarao C, Bedwal S, et al. Pulse-based cropping systems for soil health restoration, resources conservation, and nutritional and environmental security in rainfed agroecosystems. Frontiers in Microbiology. 2023;13:1041124. https://doi.org/10.3389/fmicb.2022.1041124
  39. 39. Sreenivasan K. Competitive behaviour of different legumes grown as intercrop with direct seeded upland rice [dissertation]. Vellayani: Department of Agronomy, College of Agriculture; 2002. http://hdl.handle.net/123456789/5350
  40. 40. Soundararajan RP, Chitra N. Impact of intercrops on insect pests of black gram (Vigna mungo L.). Journal of Entomology. 2012;9(4):208-19. https://doi.org/10.3923/je.2012.208.219
  41. 41. Cupina B, Mikic A, Krstic D, Antanasovic S, Pejic B, Eric P, et al. Mutual intercropping of spring annual legumes for grain production in the Balkans. The Indian Journal of Agricultural Sciences. 2011;81:10.
  42. 42. Lakra K, Verma SK, Maurya AC, Singh SB, Meena RS, Shukla UN. Enhancing crop competitiveness through sustainable weed management practices. In: Sustainable agriculture. India: Scientific Publishers; 2019. p. 109.
  43. 43. Ghosh PK, Bandyopadhyay KK, Wanjari RH, Manna MC, Misra AK, Mohanty M, et al. Legume effect for enhancing productivity and nutrient use efficiency in major cropping systems: an Indian perspective—a review. Journal of Sustainable Agriculture. 2007;30(1):59-86. https://doi.org/10.1300/J064v30n01_07
  44. 44. Behera B, Jena SN, Satapathy MR. Pulse-based cropping systems and climate change challenges in India. New Delhi: New India Publishing Agency; 2016.
  45. 45. Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiology. 2003;131(3):872-7. https://doi.org/10.1104/pp.017004
  46. 46. Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Moghal S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. Journal of Cereals and Oilseeds. 2013;4(3):32-5. https://doi.org/10.5897/JCO12.023
  47. 47. Franche C, Lindström K, Elmerich C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. 2009. https://doi.org/10.1007/s11104-008-9833-8
  48. 48. Grzebisz W, Diatta J, Barłóg P, Biber M, Potarzycki J, Łukowiak R, et al. Soil fertility clock: crop rotation as a paradigm in nitrogen fertilizer productivity control. Plants. 2022;11(21):2841. https://doi.org/10.3390/plants11212841
  49. 49. Joshi D, Rathore BS. Production technology of black gram. In: From seed to harvest: a comprehensive Kharif crop production; 2023. p. 72.
  50. 50. O'Donovan JT, Grant CA, Blackshaw RE, Harker KN, Johnson EN, Gan Y, et al. Rotational effects of legumes and non-legumes on hybrid canola and malting barley. Agronomy Journal. 2014;106(6):1921-32. https://doi.org/10.2134/agronj14.0236
  51. 51. Pooniya V, Choudhary AK, Dass A, Bana RS, Rana KS, Rana DS, et al. Improved crop management practices for sustainable pulse production: an Indian perspective. The Indian Journal of Agricultural Sciences. 2015;85(6):747-58. https://doi.org/10.56093/ijas.v85i6.49184
  52. 52. Steenwerth K, Belina KM. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Applied Soil Ecology. 2008;40(2):359-69. https://doi.org/10.1016/j.apsoil.2008.06.006
  53. 53. Das SK, Ghosh GK, Choudhury BU, Hazarika S, Mishra VK. Developing biochar and organic nutrient packages/technology as soil policy for enhancing yield and nutrient uptake in maize–black gram cropping system to maintain soil health. Biomass Conversion and Biorefinery. 2024;14(2):2515-27. https://doi.org/10.1007/s13399-022-02300-y
  54. 54. Vance CP. Legume symbiotic nitrogen fixation: agronomic aspects. In: The Rhizobiaceae: molecular biology of model plant-associated bacteria. Dordrecht: Springer Netherlands; 1998. p. 509-30. https://doi.org/10.1007/978-94-011-5060-6_26
  55. 55. Raza A, Zahra N, Hafeez MB, Ahmad M, Iqbal S, Shaukat K, et al. Nitrogen fixation of legumes: biology and physiology. In: The plant family Fabaceae: biology and physiological responses to environmental stresses. Singapore: Springer; 2020. p. 43-74. https://doi.org/10.1007/978-981-15-4752-2_3
  56. 56. Manyala CK. Improvement of nitrogen in fertility-depleted sugarcane soils through short-term preplanting of leguminous plants. Dissertation. University of Eldoret; 2018. http://41.89.164.27:8080/xmlui/handle/123456789/764
  57. 57. Calegari A. Crop rotation and cover crop on no-tillage. In: II Congresso Mundial sobre Agricultura Conservacionista. Agronomic Institute – IAPAR; 2020. p. 230-9.
  58. 58. Zhou Y, Zhu H, Yao Q. Improving soil fertility and soil functioning in cover-cropped agroecosystems with symbiotic microbes. In: Agro-environmental sustainability: Volume 1: managing crop health. Cham.: Springer; 2017. p. 149-71. https://doi.org/10.1007/978-3-319-49724-2_8
  59. 59. Otaiku AA, Soretire AA, Mmom PC. Biofertilizer impacts on soybean (Glycine max L.) cultivation, humid tropics: biological nitrogen fixation, yield, soil health and smart agriculture framework. International Journal of Agricultural Extension and Rural Development Studies. 2022;9(1):38-139. https://doi.org/10.37745/ijeards.15/vol9no1pp.38-139
  60. 60. Kasirajan S, Parthipan T, Elamathy S, Kumar GS, Rajavel M, Veeramani P. Dynamics of soil penetration resistance, moisture depletion pattern and crop productivity determined by mechanized cultivation and lifesaving irrigation in zero-till black gram. Heliyon. 2024;10(7):e28625. https://doi.org/10.1016/j.heliyon.2024.e28625
  61. 61. Clark A, editor. Managing cover crops profitably. Pennsylvania: Diane Publishing; 2008.
  62. 62. Haider FU, Cheema SA, Farooq M. Impact of cover crops in improving agro-ecosystems including sustainable weed suppression: a review. Pakistan Journal of Weed Science Research. 2019;25(1):47-57. https://doi.org/10.28941/25-1(2019)-5
  63. 63. Datta D, Ghosh S, Saha R, Nath CP. Cover crops: potential and prospects in conservation agriculture. In: Conservation agriculture and climate change. CRC Press; 2022. p. 167-87. https://doi.org/10.1201/9781003364665-14
  64. 64. Islam R, Sherman B, editor. Cover crops and sustainable agriculture. Boca Raton (FL): CRC Press; 2021.
  65. 65. Laddha KC, Sharma RK, Sharma SK, Jain PM. Integrated nitrogen management in maize and its residual effect on black gram under dryland conditions. Indian Journal of Dryland Agricultural Research and Development. 2006;21(2):177-84.
  66. 66. Kakraliya SK, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, et al. Nitrogen and legumes: a meta-analysis. In: Legumes for soil health and sustainable management. Singapore: Springer; 2018. p. 277-314. https://doi.org/10.1007/978-981-13-0253-4_9
  67. 67. Das SK, Choudhury BU, Hazarika S, Mishra VK, Laha R. Long-term effect of organic fertilizer and biochar on soil carbon fractions and sequestration in maize–black gram system. Biomass Conversion and Biorefinery. 2024;14(19):23425-38. https://doi.org/10.1007/s13399-023-04165-1
  68. 68. Yasodha M, Sharmili K, Kumar AT, Chinnusamy C. Prospects of cropping system and nutrient management towards sustainability in agriculture: a review. Agricultural Reviews. 2023;44(2):207-14.
  69. 69. Dexter AR. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma. 2004;120(3-4):201-14. https://doi.org/10.1016/j.geoderma.2003.09.004
  70. 70. Meena RS, Meena VS, Meena SK, Verma JP. Towards the plant stress mitigate the agricultural productivity: a book review. Journal of Cleaner Production. 2015;107:122-4. https://doi.org/10.1016/j.jclepro.2015.04.047
  71. 71. Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Vittal KPR, Kundu S, et al. Long‐term effects of soil fertility management on carbon sequestration in a rice–lentil cropping system of the Indo‐Gangetic Plains. Soil Science Society of America Journal. 2012;76(1):168-78. https://doi.org/10.2136/sssaj2011.0184
  72. 72. Kelly S, Abd-Alla MH, Al-Amri SM, El-Enany AWE. Enhancing Rhizobium–legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture. 2023;13(11):2092. https://doi.org/10.3390/agriculture13112092
  73. 73. Lopez CG, Mundt CC. Using mixing ability analysis from two-way cultivar mixtures to predict the performance of cultivars in complex mixtures. Field Crops Research. 2000;68(2):121-32. https://doi.org/10.1016/S0378-4290(00)00114-3
  74. 74. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature. 2002;419(6910):915-7. https://doi.org/10.1038/nature01136
  75. 75. Sharma AR, Behera UK. Nitrogen contribution through Sesbania green manure and dual-purpose legumes in maize–wheat cropping system: agronomic and economic considerations. Plant and Soil. 2009;325:289-304. https://doi.org/10.1007/s11104-009-9979-z
  76. 76. Lal R. Restoring soil quality to mitigate soil degradation. Sustainability. 2015;7(5):5875-95. https://doi.org/10.3390/su7055875
  77. 77. Brookes PC. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils. 1995;19:269-79. https://doi.org/10.1007/BF00336094
  78. 78. Suman A, Lal M, Singh AK, Gaur A. Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agronomy Journal. 2006;98(3):698-704. https://doi.org/10.2134/agronj2005.0173
  79. 79. Klauer SF, Franceschi VR. Mechanism of transport of vegetative storage proteins to the vacuole of the paraveinal mesophyll of soybean leaf. Protoplasma. 1997;200:174-85. https://doi.org/10.1007/BF01283293
  80. 80. Lansing AJ, Franceschi VR. The paraveinal mesophyll: a specialized path for intermediary transfer of assimilates in legume leaves. Functional Plant Biology. 2000;27(9):757-67. https://doi.org/10.1071/PP99167
  81. 81. Shen H, Yan X, Zhao M, Zheng S, Wang X. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates. Environmental and Experimental Botany. 2002;48(1):1-9. https://doi.org/10.1016/S0098-8472(02)00009-6
  82. 82. Nuruzzaman M, Lambers H, Bolland MD, Veneklaas EJ. Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant and Soil. 2006;281:109-20. https://doi.org/10.1007/s11104-005-3936-2
  83. 83. Gilbert GA, Knight JD, Vance CP, Allan DL. Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant, Cell & Environment. 1999;22(7):801-10. https://doi.org/10.1046/j.1365-3040.1999.00441.x
  84. 84. Alvey S, Yang CH, Bürkert A, Crowley DE. Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biology and Fertility of Soils. 2003;37:73-82. https://doi.org/10.1007/s00374-002-0573-2
  85. 85. Robertson GP, Paul EA, Harwood RR. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science. 2000;289(5486):1922-5. https://doi.org/10.1126/science.289.5486.1922
  86. 86. Chaudhary K, Kumar S, Sewhag M, Devi U. Sustaining agriculture production through crop diversification: pulses as a key alternative. Journal of Food Legumes. 2021;34(2):76-84.
  87. 87. Kumar S, Meena RS, Lal R, Singh Yadav G, Mitran T, Meena BL, et al. Role of legumes in soil carbon sequestration. In: Legumes for soil health and sustainable management. Singapore: Springer; 2018. p. 109-38. https://doi.org/10.1007/978-981-13-0253-4_4
  88. 88. Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S. Nature and role of root exudates: efficacy in bioremediation. African Journal of Biotechnology. 2011;10(48):9717-24. https://doi.org/10.5897/AJB10.2552
  89. 89. Hu C, Cao ZP, Ye ZN, Wu WL. Impact of soil fertility maintaining practice on soil microbial biomass carbon in low production agro-ecosystem in northern China. Acta Ecologica Sinica. 2006;26(3):808-14.
  90. 90. Dhakal Y, Meena RS, Kumar S. Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of greengram. Legume Research - An International Journal. 2016;39(4):590-4. https://doi.org/10.18805/lr.v0iOF.9435
  91. 91. Fahad S, Adnan M, Saud S, editors. Improvement of plant production in the era of climate change. CRC Press; 2022. https://doi.org/10.1201/9781003286417
  92. 92. Singh R, Machanuru R, Singh B, Shrivastava M. Climate-resilient agriculture: enhance resilience toward climate change. In: Global climate change. Elsevier; 2021. p. 45-61. https://doi.org/10.1016/B978-0-12-822928-6.00016-2
  93. 93. Tsuji GY, Hoogenboom G, Thornton PK, editors. Understanding options for agricultural production. Springer Science & Business Media; 1998. https://doi.org/10.1007/978-94-017-3624-4
  94. 94. Smith M, Pereira LS, Berengena J, Itier B, Goussard J, Ragab R, et al. Irrigation scheduling: from theory to practice. FAO; 1996.
  95. 95. Hesam Arefi I, Saffari M, Moradi R. Evaluating planting date and variety management strategies for adapting winter wheat to climate change impacts in arid regions. International Journal of Climate Change Strategies and Management. 2017;9(6):846-63. https://doi.org/10.1108/IJCCSM-02-2017-0030
  96. 96. Porpavai S, Devasenapathy P, Siddeswaran K, Jayaraj T. Impact of various rice-based cropping systems on soil fertility. Journal of Cereals and Oilseeds. 2011;2(3):43-6.
  97. 97. Sinha MN, Aampiah R, Rai RK. Effect of phosphorus on grain and green fodder of kharif legume using ³²P as tracer. Journal of Nuclear and Agricultural Biology. 1994;23:102-6.
  98. 98. Srinivasarao C, Kundu S, Kumpawat BS, Kothari AK, Sodani SN, Sharma SK, et al. Soil organic carbon dynamics and crop yields of maize (Zea mays)–black gram (Vigna mungo) rotation-based long-term manurial experimental system in semi-arid Vertisols of western India. Tropical Ecology. 2019;60:433-46. https://doi.org/10.1007/s42965-019-00044-x
  99. 99. Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, et al. Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biology and Biochemistry. 2011;43(3):609-19. https://doi.org/10.1016/j.soilbio.2010.11.031
  100. 100. Malviya S. Effect of conservation agricultural practices on selected soil physical properties and carbon pools in black soils of central India, dissertation. Jabalpur: JNKVV; 2014.
  101. 101. Vaishnav S, Ramulu V, Naik BB, Pasha ML, Ram T, Prakash PR, et al. Impact of different rice establishment methods and tillage systems on nodulation behaviour of succeeding chickpea and black gram. Legume Research. 2023;47(9):1531-66. https://doi.org/10.18805/LR-5181
  102. 102. Praharaj CS, Blaise D. Intercropping: an approach for area expansion of pulses. Indian Journal of Agronomy. 2016;61(Special issue 4th IAC):S113-21.
  103. 103. Earhart DR. Managing soil phosphorus accumulation from poultry litter application through vegetable/legume rotations. Sustainable Agriculture Research and Education; 1997.
  104. 104. Koala S. Adaptation of Australian ley farming to Montana dryland cereal production. Doctoral Dissertation, Montana State University-Bozeman, College of Agriculture; 1982.
  105. 105. Sims JR. Research on dryland legume-cereal rotations in Montana. In: XII Seminario Mejoramiento y Sistemas de Producción de Haba; 1988. p. 135.
  106. 106. Jena J, Maitra S, Hossain A, Pramanick B, Gitari HI, Praharaj S, et al. Role of legumes in cropping system for soil ecosystem improvement. In: Ecosystem services: types, management and benefits. Nova Science Publishers, Inc; 2022. p. 1-21.

Downloads

Download data is not yet available.