Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Effect of physical and chemical mutagens on the growth performance of two soybean (TGX 1987-62F and TGX 1835-10E) varieties in the M1 generation

DOI
https://doi.org/10.14719/pst.9136
Submitted
27 April 2025
Published
07-09-2025 — Updated on 01-10-2025
Versions

Abstract

Mutational breeding is a cost-effective and time-efficient technique that enhances genetic variability in crops by inducing mutations using physical agents like gamma rays or chemical agents like sodium azide, without involving genetic engineering. The aim of the study was to analyse the effect of gamma radiation and sodium azide (SA) on the growth performance of two soybean varieties (TGX 1987-62F and TGX 1835-10E). Growth parameters included germination percentage, plant height, number of leaves per plant, number of pods per plant, days to 50 % flowering, chlorophyll content, 100-seed weight and total grain yield. The experiment included 20 treatments and was laid out in a randomized complete block design (RCBD). Statistical analysis showed that among the two varieties, the highest rate of germination (60.0 % seedling/plot) was found in TGX 1835 (15Gy) while, 19.67 % seedling/plot was observed at 0.0.2 % SA. Average plant height (64.40 cm) was observed in TGX 1835 irradiated with 10Gy, as compared to the controls (TGX 1987: 55.46 cm and TGX 1835: 60.93 cm). Highest average leaf count in TGX 1987 was 125.67 leaves/plant, irradiated with 10Gy while, 183.33 leaves/plant, treated with 0.02 % SA. The highest total leaf area of 163.19 cm2 was recorded in TGX 1835 in M1 (mutation 1 generation) plants and 163.56 cm2, treated with 0.02 % SA. The gamma ray’s treatment at 10Gy in TGX 1835 affirmed its potential in generating highest yield in M1 plants. Future breeding programs should focus on stabilizing these mutants (M1 and subsequent generations) to develop commercially viable high-yield varieties, for food security.

References

  1. 1. Falcon WP, Naylor RL, Shankar ND. Rethinking global food demand for 2050. Popul Dev Rev. 2022;48(4):921-57. https://doi.org/10.1111/padr.12508
  2. 2. Chopra VL. Mutagenesis: Investigating the process and processing the outcome for crop improvement. Curr Sci. 2005;89(2):353-9.
  3. 3. Beyaz R, Yildiz M. The use of gamma irradiation in plant mutation breeding. In: Jurić S, editor. Plant Engineering. London: Intech Open; 2017:33-46. https://doi.org/10.5772/intechopen.69974
  4. 4. Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJ, Till BJ, et al. Plant mutation breeding: current progress and future assessment. In: Janick J, editor. Plant Breeding Reviews. Hoboken (NJ): Wiley; 2015:23-88.
  5. 5. Patil AM, Wagh SG, Janvale GB, Pawar BD, Daspute AA. Viral delivery of CRISPR/Cas9 genome editing for rapid crop improvement: A promising approach to enhance crop resilience against biotic and abiotic stresses. Int J Adv Biochem Res. 2023;8(3):782-96. https://doi.org/10.33545/26174693.2024.v8.i3Sj.885
  6. 6. Tamilzharasi M, Dharmalingam K, Venkatesan T, Jegadeesan S, Palaniappan J. Mutagenic effectiveness and efficiency of gamma rays and combinations with EMS in the induction of macro mutations in blackgram (Vigna mungo (L.) Hepper). Appl Radiat Isot. 2022;188:110382. https://doi.org/10.1016/j.apradiso.2022.110382
  7. 7. Amoanimaa-Dede H, Su C, Yeboah A, Zhou H, Zheng D, Zhu H. Growth regulators promote soybean productivity: A review. Peer J. 2022;10:1-53. https://doi.org/10.7717/peerj.12556
  8. 8. Salunkhe DK, Sathe SK, Reddy NR. Legume lipids. In: Arora SK, editor. Chemistry and Biochemistry of Legumes. London: Edward Arnold Pub. Ltd.; 1983.
  9. 9. Alghamdi SS, Khan MA, El-Harty EH, Ammar MH, Farooq M, Migdadi HM. Comparative phytochemical profiling of different soybean (Glycine max (L.) Merr) genotypes using GC–MS. Saudi J Biol Sci. 2018;25(1):15-21. https://doi.org/10.1016/j.sjbs.2017.10.014
  10. 10. Bhatti S, Heeren DM, Evett SR, O’Shaughnessy SA, Rudnick DR, Franz TE, et al. Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska. Agric Water Manag. 2022;274:107946. https://doi.org/10.1016/j.agwat.2022.107946
  11. 11. Hymowitz T, Harlan JR. Introduction of soybeans to North America by Samuel Bowen in 1765. Econ Bot. 1983;37:371-9. https://doi.org/10.1007/BF02904196
  12. 12. Dupare BU, Billore SD. Soybean package of practices for crop management. Indore: ICAR-Indian Institute of Soybean Research; 2016. Extension Bulletin 13:1-54.
  13. 13. Nagar S, Singh M, Billore SD, Verma RK, Kuchlan P, Chandra S. Soybean seed germination: factors affecting and ways to minimize germination loss. Popular Kheti. 2018;6(2):13-7.
  14. 14. Sedibe MM, Mofokeng AM, Masvodza DR. Soybean production, constraints and future prospects in poorer countries: A review. In: Hasanuzzaman M, editor. Production and Utilization of Legumes - Progress and Prospects. 1st ed. London: IntechOpen; 2023:1-15. https://doi.org/10.5772/intechopen.109516
  15. 15. Nuthalapati CS, Kumar A, Birthal PS, Sonkar VK. Demand-side and supply-side factors for accelerating varietal turnover in smallholder soybean farms. J Clean Prod. 2024;447:141372. https://doi.org/10.1016/j.jclepro.2024.141372
  16. 16. Yusuf R, Idowu N. Character association and path analysis for yield attributes in full sib progenies in pigeon pea (Cajanus cajan (L.) Millsp.). Electron J Plant Breed. 2010;1(4):824-7.
  17. 17. Saibari I, Barrijal S, Mouhib M, Belkadi N, Hamim A. Gamma irradiation-induced genetic variability and its effects on the phenotypic and agronomic traits of groundnut (Arachis hypogaea L.). Front Genet. 2023;14:1124632. https://doi.org/10.3389/fgene.2023.1124632
  18. 18. Chandra A, Tewari SN. Effect of fast neutrons and gamma irradiation on germination, pollen and ovule sterility and leaf variation in mungbean. Acta Bot Indica. 1978;6(2):206-8.
  19. 19. Rao AS, Jana MK. Leaf mutations induced in blackgram by X rays and EMS. Environ Exp Bot. 1976;16(3):151-4. https://doi.org/10.1016/0098-8472(76)90007-1
  20. 20. Etther Y, Gahukar SJ, Akhare A, Patil AN, Jambhulkar SJ, Gawande M. Genetic variability induced by gamma radiation and ethyl methane sulphonate on quantitative characters in pigeonpea (Cajanus cajan). J Pharmacogn Phytochem. 2019;8(2):1903-7.
  21. 21. Nayak BR, Naik KS, Padiya R, Yugandhar A, Kumar GV. Assessment on seedling traits of black gram (Vigna mungo L. Hepper) mutants raised during M2 generation. Int J Econ Plants. 2023;10(1):20-6. https://doi.org/10.23910/2/2023.0502a
  22. 22. Narsinghani VG, Kumar S. Mutation studies in gamma-ray treated peas. MJAS. 1976;10(3):396-403.
  23. 23. Tu M, Du C, Yu B, Wang G, Deng Y, Wang Y, et al. Current advances in the molecular regulation of abiotic stress tolerance in sorghum via transcriptomic, proteomic and metabolomic approaches. Front Plant Sci. 2023;14:1147328. https://doi.org/10.3389/fpls.2023.1147328
  24. 24. Khan MH, Tyagi SD. Cytological effects of different mutagens in soybean (Glycine max (L.) Merrill). Front Agric China. 2009;3:397-401. https://doi.org/10.1007/s11703-009-0065-3
  25. 25. Hamisu A, Koul B, Arukha AP, Al Nadhari S, Rabbee MF. Evaluation of the impact of chemical mutagens on the phenological and biochemical characteristics of two varieties of soybean (Glycine max L.). Life. 2024;14(7):1-17. https://doi.org/10.3390/life14070909
  26. 26. Aishatu GA. Sodium azide: A chemical mutagen for enhancement of yield traits of sesame. J Bacteriol Parasitol. 2015;5:1-21. https://doi.org/10.4172/2155-9597.C1.014
  27. 27. Apparao BJ. Effect of sodium azide on peroxidase isozyme profiles in Vigna unguiculata (L.) Walp. Adv Plant Sci. 2005;18(1):289-93.
  28. 28. Mensah JK, Obadoni BO, Akomeah PA, Janet A. The effects of sodium azide and colchicine treatments on morphological and yield traits of sesame seed (Sesamum indicum L.). Afr J Biotechnol. 2007;6(5):534-8. https://www.ajol.info/index.php/ajb/article/view/56844
  29. 29. Winkler HM, Cereijo AE, Scarpin GJ, Di Leo PN, Muchut RJ, Roeschlin RA, et al. Phenotypic effects of different doses of physical and chemical mutagens in cotton plants. Rev Investig Agropecu. 2023;49(2):71-84. https://doi.org/10.2139/ssrn.4108593
  30. 30. Ahmed MA, Chakraborty N, Tabana Y, Dahham SS, Shazrina I, Mohamed R, et al. The effect of physical and chemical mutagen on tomato plant. Adv Biol Res. 2017;11(2):64-9.
  31. 31. Markeen KG, Suresh B, Lavanya GR. Effect of mutagenesis on M1 population in urd bean. J Food Legumes. 2007;20(1):109-10. https://doi.org/10.5897/AJB2013.12785
  32. 32. OlaOlorun BM, Shimelis H, Laing M, Mathew I. Morphological variations of wheat (Triticum aestivum L.) under variable ethyl methane sulphonate mutagenesis. Cereal Res Commun. 2021;49:301-10. https://doi.org/10.1007/s42976-020-00092-3
  33. 33. Gupta S, Kumawat G, Agrawal N, Tripathi R, Rajesh V, Nataraj V, et al. Photoperiod trait: Insight in molecular mechanism for growth and maturity adaptation of soybean (Glycine max) to different latitudes. Plant Breed. 2022;141(4):483-500. https://doi.org/10.1111/pbr.13041
  34. 34. Khan S, Mujeeb UR, Meheraj-Ud-Din B, Bahar AS. MMS induced biological damage and polygenic variability in green gram (Vigna radiata (L.) Wilczek). Legume Res. 2000;23(2):126-9.
  35. 35. Rosati VC, Quinn AA, Fromhold SM, et al. Investigation into the role of DNA methylation in cyanogenesis in sorghum (Sorghum bicolor L. Moench). Plant Growth Regul. 2019;88:73-85. https://doi.org/10.1007/s10725-019-00489-z
  36. 36. Deshmukh PD, Malode SN. Effects of gamma radiation on seed germination, plant survival and growth characteristics in Dianthus caryophyllus var. Chabaud. J Glob Biosci. 2018;7(3):5403-10.
  37. 37. Parchin RA, Ghomi AAN, Badi HN, Navabpour S, Mehrafarin A, Eskandari A. Investigation effect of ethyl methane sulfonate (EMS) on some morphophysiological and phytochemical traits of fenugreek (Trigonella foenum-graecum L.). Ind Crops Prod. 2021;162:113239. https://doi.org/10.1016/j.indcrop.2021.113239
  38. 38. Barshille S, Auti S, Apparao BJ. Genetic enhancement of chickpea through induced mutagenesis. J Food Legumes. 2009;22(1):26-9.
  39. 39. Kumar G, Srivastava N. Efficiency and effectiveness of gamma rays and sodium azide in Sesbania cannabina Poir. Cytologia. 2013;78(1):81-90. https://doi.org/10.1508/cytologia.78.81

Downloads

Download data is not yet available.