Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Effect of chia (Salvia hispanica L.) seed mucilage as novel edible coating for enhancing shelf-life of fresh tomato (Solanum lycopersicum L.) fruits

DOI
https://doi.org/10.14719/pst.9188
Submitted
29 April 2025
Published
09-08-2025 — Updated on 22-08-2025
Versions

Abstract

The present investigation was carried out at Indira College of Pharmacy, Pune, Maharashtra, India, during 2024-25. Tomato fruits are widely used in preparing various food items of Indian cuisine for taste, flavor and colour. However, fresh tomato fruits typically exhibit a short shelf life at room temperature. In this study, coating the tomato fruits with 1 % chia seed mucilage significantly prolonged their shelf life up to 21 days compared to untreated controls. This enhanced preservation is primarily attributed to the hydrophilic nature and effective barrier properties of the chia seed mucilage (CSM). These properties effectively reduced moisture loss and limit oxygen permeability, which are key factors in delaying spoilage. The coating was effective in maintaining critical quality parameters such as titratable acidity, total soluble solids and antioxidant activity, thereby preserving both nutritional and sensory attributes. The findings highlight the potential of chia seed mucilage as a natural and biodegradable alternative to synthetic coatings for the preservation of fresh tomato fruits. CSM coatings not only address consumer demand for sustainable and eco-friendly postharvest solutions but also offer an innovative approach to reduce postharvest losses. Overall, this research underscores the promising role of CSM coatings in enhancing shelf life and maintaining the quality of fresh tomato fruits.

References

  1. 1. Blancas-Benitez FJ, Montano-Leyva B, Aguirre-Guitron L, Moreno-Hernandez CL, Fonseca-Cantabrana A, del Carmen Romero-Islas L, et al. Impact of edible coatings on quality of fruits: A review. Food Control. 2022;139:109063. https://doi.org/10.1016/j.foodcont.2022.10906
  2. 2. Momin MC, Jamir AR, Ankalagi N, Henny T, Devi OB. Edible coatings in fruits and vegetables: A brief review. Pharma Innov J. 2021;10(7):71-78. https://doi.org/10.14719/pst.5140
  3. 3. Zhou C, Bai J, Zhang F, Zhang R, Zhang X, Zhong K, et al. Development of mussel-inspired chitosan-derived edible coating for fruit preservation. Carbohydr Polym. 2023;321:121293. https://doi.org/10.1016/j.carbpol.2023.121293
  4. 4. Mousavi SR, Rahmati-Joneidabad M, Noshad M. Effect of chia seed mucilage/bacterial cellulose edible coating on bioactive compounds and antioxidant activity of strawberries during cold storage. Int J Biol Macromol. 2021;190:618-23. https://doi.org/10.1016/j.ijbiomac.2021.08.213
  5. 5. Punia S, Dhull SB. Chia seed (Salvia hispanica L.) mucilage (a heteropolysaccharide): Functional, thermal, rheological behaviour and its utilization. Int J Biol Macromol. 2019;140:1084-90. https://doi.org/10.1016/j.ijbiomac.2019.08.205
  6. 6. Dick M, Costa TM, Gomaa A, Subirade M, De Oliveira Rios A, Flores SH, et al. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr polym. 2015;130:198-205. https://doi.org/10.1016/j.carbpol.2015.05.040
  7. 7. Sumitra S, Sehrawat A. Pharmacognostical standardization and preliminary phytochemical explorations on Salvia hispanica L. seeds. J Drug Deliv Ther. 2019;9(1-s):139-43. https://doi.org/10.22270/jddt.v9i1-s.2375
  8. 8. Munoz LA, Cobos A, Diaz O, Aguilera JM. Chia seeds: Microstructure, mucilage extraction and hydration. J Food Eng. 2012;108(1):216-24. https://doi.org/10.1016/j.jfoodeng.2011.06.037
  9. 9. Zam W. Effect of alginate and chitosan edible coating enriched with olive leaves extract on the shelf life of sweet cherries (Prunus avium L.). J Food Qual. 2019;2019(1):8192964. https://doi.org/10.1155/2019/8192964
  10. 10. Hatfield SGS, Knee M. Effects of water loss on apples in storage. Int J Food Sci Technol. 1998;23(6):575-83. https://doi.org/10.1111/j.1365-2621.1988.tb01043.x
  11. 11. Ranganna S. Handbook of analysis and quality control for fruits and vegetable products. New Delhi: McGraw Hill Education (India) Ltd; 2014.
  12. 12. Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009;112(3):654-58. https://doi.org/10.1016/j.foodchem.2008.06.026
  13. 13. IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk, New York: IBM Corp. 2017. https://www.ibm.com/products/spss-statistics
  14. 14. Urbizo-Reyes U, San Martin-González MF, Garcia-Bravo J, Vigil ALM, Liceaga AM. Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food Hydrocoll. 2019;97:105187. https://doi.org/10.1016/j.foodhyd.2019.105187
  15. 15. Mensah EO, Oludipe EO, Gebremeskal YH, Nadtochii LA, Baranenko D. Evaluation of extraction techniques for chia seed mucilage; A review on the structural composition, physicochemical properties and applications. Food Hydrocoll. 2024;110051. https://doi.org/10.1016/j.foodhyd.2024.110051
  16. 16. Solanki D, Dhungana P, Tan QY, Badin R, Bhandari B, Sahu JK, et al. Assessing the functional and physicochemical properties of chia seed mucilage extracted using an innovative extraction method. Food Hydrocoll. 2024;156:110342. https://doi.org/10.1016/j.foodhyd.2024.110342
  17. 17. Brax M, Schaumann GE, Diehl D. Gel formation mechanism and gel properties controlled by Ca2+ in chia seed mucilage and model substances. J Plant Nutr Soil Sci. 2019;182(1):92-103. https://doi.org/10.1002/jpln.201800430
  18. 18. Gonzalez MF, Garcia-Bravo J, Liceaga AM. Development of chia seed (Salvia hispanica) mucilage films plasticized with polyol mixtures: Mechanical and barrier properties. Int J Biol Macromol. 2020;163:854-64. https://doi.org/10.1016/j.ijbiomac.2020.07.023
  19. 19. Xiao H, Piovesan A, Pols S, Verboven P, Nicolai B. Microstructural changes enhance oxygen transport in tomato (Solanum lycopersicum) fruit during maturation and ripening. New Phytologist. 2021;232(5):2043-56.
  20. 20. Pullanagari RR, Li M. Uncertainty assessment for firmness and total soluble solids of sweet cherries using hyperspectral imaging and multivariate statistics. J Food Eng. 2021;289:110177. https://doi.org/10.1016/j.jfoodeng.2020.110177
  21. 21. Yuxia L, Qingfei D, Shuke Y, Mahafooj A, Hongsheng L. Enhancing mechanical and water barrier properties of starch film using chia mucilage. Int J Biol Macromol. 2024;274(2):133288. https://doi.org/10.1016/j.ijbiomac.2024.133288
  22. 22. Fernandes SS, Da Silva CP, Egea MB, Martínez JPQ, Campos MRS, Otero DM. Chia mucilage carrier systems: A review of emulsion, encapsulation, and coating and film strategies. Food Res Int. 2023;172:113125. https://doi.org/10.1016/j.foodres.2023.113125
  23. 23. Mujtaba M, Ali Q, Yilmaz BA, Kurubas MS, Ustun H, Erkan, et al. Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chem. 2023;416:135816. https://doi.org/10.1016/j.foodchem.2023.135816
  24. 24. Ktenioudaki A, O’Donnell CP, Emond JP, do Nascimento Nunes MC. Blueberry supply chain: Critical steps impacting fruit quality and application of a boosted regression tree model to predict weight loss. Postharvest Biol Technol. 2021;179:111590. https://doi.org/10.1016/j.postharvbio.2021.111590
  25. 25. Gupta AK, Pathak U, Tongbram T, Medhi M, Terdwongworakul A, Magwaza LS, et al. Emerging approaches to determine maturity of citrus fruit. Crit Rev Food Sci Nutr. 2022;62(19):5245-66. https://doi.org/10.1080/10408398.2021.1883547
  26. 26. Diaz-Mula HM, Serrano M, Valero D. Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food Bioprocess Technol. 2012;5:2990-97. https://doi.org/10.1007/s11947-011-0599-2
  27. 27. Yaman O, Bayoindirli L. Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food Sci Technol. 2002;35(2):146-50. https://doi.org/10.1006/fstl.2001.0827
  28. 28. Tasdelen O, Bayindirli L. Controlled atmosphere storage and edible coating effects on storage life and quality of tomatoes. J Food Process Preserv. 1998;22(4):303-20. https://doi.org/10.1111/j.1745-4549.1998.tb00352.x
  29. 29. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Phcog Rev. 2010;4(8):118-26. https://doi.org/10.4103/0973-7847.70902
  30. 30. Yadav A, Kumar N, Upadhyay A, Sethi S, Singh A. Edible coating as postharvest management strategy for shelf‐life extension of fresh tomato (Solanum lycopersicum L.): An overview. J Food Sci. 2022;87(6):2256-90. https://doi.org/10.1111/1750-3841.16145
  31. 31. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33. https://doi.org/10.1038/s41580-023-00645-4
  32. 32. Gebremeskal YH, Nadtochii LA, Eremeeva NB, Mensah EO, Kazydub NG, Soliman TN, et al. Comparative analysis of the nutritional composition, phytochemicals, and antioxidant activity of chia seeds, flax seeds, and psyllium husk. Food Biosci. 2024;61:104889. https://doi.org/10.1016/j.fbio.2024.104889
  33. 33. Gill PP, Jawandha SK, Singh NP, Kaur S, Kaur P. Role of gum Arabic combined with cinnamic acid coating on quality and cell wall degradation enzymes of mango fruits at low temperature. Int J Biol Macromol. 2024;259:129088. https://doi.org/ 10.1016/j.ijbiomac.2023.129088
  34. 34. Kowalska H, Marzec A, Domian E, Kowalska J, Ciurzyńska A, Galus S. Edible coatings as osmotic dehydration pretreatment in nutrient‐enhanced fruit or vegetable snacks development: A review. Compre Rev Food Sci Food Saf. 2021;20(6):5641-74. https://doi.org/10.1111/1541-4337.12837
  35. 35. Adiletta G, Di Matteo M, Petriccione M. Multifunctional role of chitosan edible coatings on antioxidant systems in fruit crops: A review. Int J Mol Sci. 2021;22(5):2633. https://doi.org/10.3390/ijms22052633

Downloads

Download data is not yet available.