Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Gene characterization and computational identification of potential phytochemicals against non-small cell lung carcinoma

DOI
https://doi.org/10.14719/pst.9189
Submitted
29 April 2025
Published
26-06-2025
Versions

Abstract

Non-small cell lung carcinoma (NSCLC) accounts for about 85 % of lung cancer cases and is frequently linked to mutations in genes like EGFR, ALK and BRAF, which play a role in tumor resistance and growth. It is crucial to develop innovative therapeutic strategies that target NSCLC-related genes with significant mutations and poor prognostic outcomes. Numerous phytochemicals derived from plants offer promising alternatives for targeting key NSCLC-related genes due to their potential anticancer effects. Phytochemicals from neem (Azadirachta indica), turmeric (Curcuma longa), green tea (Camellia sinensis), grapes (Vitis vinifera) and red spider lily (Lycoris radiata) were examined. Compounds with strong binding affinities were identified through molecular docking and virtual screening and their pharmacokinetic properties were assessed using ADMET profiling. Computational tools such as cBioPortal and GEPIA2 were utilized to analyze gene selection and expression, while BIOVIA discovery studio was used to visualize protein-ligand interactions. Among the phytochemicals screened, meliantriol and riboflavin stood out as promising candidates due to their high binding affinities and favorable ADMET profiles. Riboflavin effectively targeted LMNB2, while meliantriol showed strong interactions with PCLO, highlighting their potential to interfere with cancerous pathways. Phytochemicals also demonstrated mechanisms such as the suppression of signaling pathways, induction of mitochondrial apoptosis and inhibition of EGFR. This comprehensive approach highlights the potential of natural compounds in addressing drug resistance and tumor heterogeneity in NSCLC, paving the way for novel, plant-based therapies. Future research will involve molecular dynamics simulations and in vitro validation to confirm these findings.

References

  1. 1. Massafra M, Passalacqua MI, Gebbia V, Macrì P, Lazzari C, Gregorc V, et al. Immunotherapeutic advances for NSCLC. Biologics. 2021;8:399-417. https://doi.org/10.2147/BTT.S295406
  2. 2. Garinet S, Wang P, Mansuet-Lupo A, Fournel L, Wislez M, Blons H. Updated prognostic factors in localized NSCLC. Cancers. 2022;14(6):1400. https://doi.org/10.3390/cancers14061400
  3. 3. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nature Rev Cancer. 2017;17(11):637-58.
  4. 4. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: The in vivo evidence. Nature Rev Drug Discov. 2006;5(6):493-506. https://doi.org/10.1038/nrd2060
  5. 5. Leonetti A, Facchinetti F, Rossi G, Minari R, Conti A, Friboulet L, et al. BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall. Cancer Treat Rev. 2018;66:82-94. https://doi.org/10.1016/j.ctrv.2018.04.006
  6. 6. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. BioMed Res Int. 2011;2011(1):583929. https://doi.org/10.1155/2011/583929
  7. 7. Passaro A, Attili I, Rappa A, Vacirca D, Ranghiero A, Fumagalli C, et al. Genomic characterization of concurrent alterations in non-small cell lung cancer (NSCLC) harboring actionable mutations. Cancers. 2021;13(9):2172. https://doi.org/10.3390/cancers13092172
  8. 8. Cascetta P, Marinello A, Lazzari C, Gregorc V, Planchard D, Bianco R, et al. KRAS in NSCLC: State of the art and future perspectives. Cancers. 2022;14(21):5430. https://doi.org/10.3390/cancers14215430
  9. 9. Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations—A review. Trans Lung Cancer Res. 2015;4(1):67. https://doi.org/10.3978/j.issn.2218-6751.2014.11.06
  10. 10. Alduais Y, Zhang H, Fan F, Chen J, Chen B. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Medicine. 2023;102(8):e32899. https://doi.org/10.1097/md.0000000000032899
  11. 11. Tyagi A, Raina K, Gangar S, Kaur M, Agarwal R, Agarwal C. Differential effect of grape seed extract against human non-small-cell lung cancer cells: The role of reactive oxygen species and apoptosis induction. Nutri Cancer. 2013;65(sup1):44-53. https://doi.org/10.1080/01635581.2013.785003
  12. 12. Mao JT, Lu QY, Xue B, Neis P, Zamora FD, Lundmark L, et al. A pilot study of a grape seed procyanidin extract for lung cancer chemoprevention. Cancer Preven Res. 2019;12(8):557-66. https://doi.org/10.1158/1940-6207.capr-19-0053
  13. 13. Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, et al. Lycorine (Lycoris radiata)—A unique natural medicine on breast cancer. J Cell Mol Med. 2024;28(16):e70032. https://doi.org/10.1111/jcmm.70032
  14. 14. Xu J, Yan B, Xiao X, Yuan Q, Dong X, Du Q, et al. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma via P53 signaling-mediated mechanism bypassed by JNK regulation. Cancer Cell Int. 2022;22(1):39. https://doi.org/10.1186/s12935-022-02468-3
  15. 15. Cheng Z, Zhang Z, Han Y, Wang J, Wang Y, Chen X, et al. A review on anti-cancer effect of green tea catechins. J Funct Foods. 2020;74:104172. https://doi.org/10.1016/j.jff.2020.104172
  16. 16. Wan Mohd Tajuddin WN, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients. 2019;11(12):2989. https://doi.org/10.3390/nu11122989
  17. 17. Bernhardt M, Behrens HM, Krüger S, Röcken C. Exploration of the tumour biological significance of PCLO in gastric cancer: Results from a large central European cohort. Pathobiology. 2024;91(3):187-95. https://doi.org/10.1159/000534889
  18. 18. Zhao L, Claggett B, Tian L, Uno H, Pfeffer MA, Solomon SD, et al. On the restricted mean survival time curve in survival analysis. Biometrics. 2016;72(1):215-21. https://doi.org/10.1111/biom.12384
  19. 19. Cetin K, Ettinger DS, Hei YJ, O’Malley CD. Survival by histologic subtype in stage IV nonsmall cell lung cancer based on data from the surveillance, epidemiology and end results program. Clinic Epidem. 2011;28:139-48. https://doi.org/10.2147/clep.s17191
  20. 20. Chang YS, Tu SJ, Chen YC, Liu TY, Lee YT, Yen JC, et al. Mutation profile of non-small cell lung cancer revealed by next generation sequencing. Respir Res. 2021;22:3. https://doi.org/10.1186/s12931-020-01608-5
  21. 21. Restrepo JC, Martínez Guevara D, Pareja López A, Montenegro Palacios JF, Liscano Y. Identification and application of emerging biomarkers in treatment of non-small-cell lung cancer: Systematic review. Cancers. 2024;16(13):2338. https://doi.org/10.3390/cancers16132338
  22. 22. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-04. https://doi.org/10.1158/2159-8290.cd-12-0095
  23. 23. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acid Res. 2019;47(W1):W556-60. https://doi.org/10.1093/nar/gkz430
  24. 24. Dong CH, Jiang T, Yin H, Song H, Zhang Y, Geng H, et al. LMNB2 promotes the progression of colorectal cancer by silencing p21 expression. Cell Death & Disease. 2021;12(4):331. https://doi.org/10.1038/s41419-021-03602-1
  25. 25. Patel SM, Venkata KC, Bhattacharyya P, Sethi G, Bishayee A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. In: Seminars in cancer biology. Academic Press; 2016. p. 100-15. https://doi.org/10.1016/j.semcancer.2016.03.002
  26. 26. Yang CS, Wang X. Green tea and cancer prevention. Nutri Cancer. 2010;62(7):931-37. https://doi.org/10.1080/01635581.2010.509536
  27. 27. BIOVIA, Dassault Systèmes. Discovery Studio Modeling Environment, Release 2021. San Diego: Dassault Systèmes; 2021.
  28. 28. Vivek-Ananth RP, Mohanraj K, Sahoo AK, Samal A. IMPPAT 2.0: An enhanced and expanded phytochemical atlas of Indian medicinal plants. ACS Omega. 2023;8:8827–45. https://doi.org/10.1021/acsomega.3c00156
  29. 29. Karthikeyan R, Vivek-Ananth RP, Bharath Chand RP, Aparna SR, Mangalapandi P, Samal A. A curated database of genes associated with human diseases for biomolecular network analysis. Sci Rep. 2018;8:4329. https://doi.org/10.1038/s41598-018-22631-z
  30. 30. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-50. https://doi.org/10.1007/978-1-4939-2269-7_19

Downloads

Download data is not yet available.