This is an outdated version published on 12-08-2025. Read the
most recent version.
Research Articles
Early Access
Aeroponic cultivation of chrysanthemum (Chrysanthemum morifolium): Influence of electrical conductivity on morphological, physiological and yield traits
School of Agricultural Sciences, Dhanalakshmi Srinivasan University, Trichy 621 112, Tamil Nadu, India
School of Agricultural Sciences, Dhanalakshmi Srinivasan University, Trichy 621 112, Tamil Nadu, India
Abstract
The present study investigates the influence of different electrical conductivity (EC) levels (0.5 EC and 1 EC) on the morphological, physiological and yield parameters of chrysanthemum grown under an aeroponic system. Significant differences were observed in plant height (V2 - 37.34 cm), stem diameter (V1 - 1.92 cm), number of leaves, internodal length, root length (V2 - 44.31 cm), root fresh and dry weight (V5 - 10.15 g), fresh and dry weight of the plant (V2 - 140.61 g), leaf area, transpiration rate, photosynthetic rate, stomatal conductance, total chlorophyll content and biochemical parameters such as soluble protein content (V5 - 67.29 mg g-1), catalase activity (V5
- 38.81 μg H2O g-1 min-1) and peroxidase activity. Flowering characteristics, including number of flowers per plant (V4 - 56.94 number), flower diameter (V3 - 6.62 cm), vase life and weight of cut stem (V3 - 5.53 g), were also significantly affected. The results indicate that the aeroponic system with optimized EC levels enhances growth and flowering performance in chrysanthemum.
References
- 1. Gorbe E, Calatayud A. Optimization of nutrition in soilless systems: A review. Adv Bot Res. 2010;53:193-245. https://doi.org/10.1016/S0065-2296(10)53006-4
- 2. Landowne D. Cell Physiology: Lange Medical Books/McGraw-Hill. 2006.
- 3. Tessema L, Chindi A, Gebremedhin WG, Solomon A, Shunka E, Seid E. Determination of nutrient solutions for potato (Solanum tuberosum L.) seed production under aeroponics production system. Open Agri. 2017;2(1):155-59. https://doi.org/10.1515/opag-2017-0015
- 4. Williams R. The physiology of plant growth with special reference to the concept of net assimilation rate. Ann Bot. 1946;10(37):41-72.
- 5. Yoshida S, Forno DA, Cock JH. Laboratory manual for physiological studies of rice. 1971. https://doi.org/10.5555/19721703488
- 6. Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. https://doi.org/10.5555/19511404458
- 7. Hammerschmidt R, Nuckles E, Kuć J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol. 1982;20(1):73-82. https://doi.org/10.1016/0048-4059(82)90025-X
- 8. Sumarni E, Suhardiyanto H, Seminar KB, Saptomo SK. Temperature distribution in aeroponics system with root zone cooling for the production of potato seed in tropical lowland. Int J Sci Eng Res. 2013;4(6):799-804.
- 9. Romero-Aranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci. 2001;160(2):265-72. https://doi.org/10.1016/S0168-9452(00)00388-5
- 10. Reina-Sánchez A, Romero-Aranda R, Cuartero J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water. Agric Water Manag. 2005;78(1-2):54-66. https://doi.org/10.1016/j.agwat.2005.04.021
- 11. Kim HJ, Cho YS, Kwon OK, Cho MW, Hwang JB, Bae SD, et al. Effect of pH and EC of hydroponic solution on the growth of greenhouse rose. Asian J Plant Sci. 2005.
- 12. Huang J, Redman RE. Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Can J Plant Sci. 1995;75:815-19. https://doi.org/10.4141/cjps95-137
- 13. Szaniawski R. Adaptation and functional balance between shoot and root activity of sunflower plants grown at different root temperatures. Ann Bot. 1983;51(4):453-59. https://doi.org/10.1093/oxfordjournals.aob.a086490
- 14. Lynch JP. Root architecture and plant productivity. Plant Physiol. 1995;109(1):7–13. https://doi.org/10.1104/pp.109.1.7
- 15. Comas LH, Becker SR, Von Mark VC, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Front Plant Sci. 2013;4:442. https://doi.org/10.3389/fpls.2013.00442
- 16. Fageria NK, Moreira A. The role of mineral nutrition on root growth of crop plants. Adv Agron. 2011;110;251–331. https://doi.org/10.1016/B978-0-12-385531-2.00004-9
- 17. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, et al. Root growth maintenance during water deficits: Physiology to functional genomics. J Exp Bot. 2004;55(407):2343–51. https://doi.org/10.1093/jxb/erh276
- 18. Rich SM, Watt M. Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. J Exp Bot. 2013;64(5):1193–208. https://doi.org/10.1093/jxb/ert043
- 19. Smith FA. Growth, activity and interaction with soils. Plant Roots. 2007. https://doi.org/10.1093/aob/mcm099
- 20. Passioura JB. Environmental biology and crop improvement. Funct Plant Biol. 2002;29(5):537–46. https://doi.org/10.1071/FP02020
- 21. Reynolds MP, Mujeeb-Kazi A, Sawkins M. Prospects for utilizing plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Anal Appl Biol. 2005;146(2):239–59. https://doi.org/10.1111/j.1744-7348.2005.040058.x
- 22. Chang DC, Park CS, Kim SY, Kim SJ, Lee YB. Physiological growth responses by nutrient interruption in aeroponically grown potatoes. Am J Potato Res. 2008;85(5):315.
- 23. Teixeira J, Pereira S. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environ Exp Bot. 2007;60(1):121-26. https://doi.org/10.1016/j.envexpbot.2006.09.003
- 24. Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol. 1980;31(1):149-90. https://doi.org/10.1146/annurev.pp.31.060180.001053
- 25. Slafer GA, Rawson HM. Sensitivity of wheat phasic development to major environmental factors: A re-examination of some assumptions made by physiologists and modelers. Aust J Plant Physiol. 1994;21(4): 393–426. https://doi.org/10.1071/PP9940393
- 26. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: Effects, mechanisms and management. Agron Sustain Dev. 2009;29(1):185–212.
- 27. Blum A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009;112(2–3):119–23. https://doi.org/10.1016/j.fcr.2009.03.009
- 28. Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Diaz-Espejo A, et al. Mesophyll diffusion conductance to CO₂: An unappreciated central player in photosynthesis. Plant Sci. 2012;193–194:70–84. https://doi.org/10.1016/j.plantsci.2012.05.009
- 29. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD. Breeding for high water-use efficiency. J Expl Bot. 2004;55(407):2447–60. https://doi.org/10.1093/jxb/erh277
- 30. Ding X, Jiang Y, Zhao H, Guo D, He L, Liu F, et al. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. chinensis) in a hydroponic system. PLoS One. 2018;13(8):e0202090. https://doi.org/10.1371/journal.pone.0202090
- 31. Romero-Aranda R, Syvertsen JP. The influence of foliar applied urea nitrogen and saline solutions on net gas exchange of citrus leaves. J Am Soc Hortic Sci. 1996;121(3):501-506.
- 32. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: A review. Plant Signal Behav. 2012;7(11):1456–66. https://doi.org/10.4161/psb.21949
- 33. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30. https://doi.org/10.1016/j.plaphy.2010.08.016
- 34. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67. https://doi.org/10.1111/j.1365-3040.2009.02041.x
- 35. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;1–26. https://doi.org/10.1155/2012/217037
- 36. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R. Responses of antioxidant defense system of Catharanthus roseus (L.) to paclobutrazol treatment under salinity. Acta Physiol Plant. 2009;31(3):361–66.
- 37. Kumar A, Singh D, Singh M. Genetic variability and character association in French bean (Phaseolus vulgaris L.). Legume Res. 2015;38(3):353–56.
- 38. Blümel M, Dally N, Jung C. Flowering time regulation in crops—What did we learn from Arabidopsis? Curr Opin Biotech. 2015;32:121–29. https://doi.org/10.1016/j.copbio.2014.11.023
- 39. Munns R, Tester M. Mechanisms of salinity tolerance. Ann Rev Plant Biol. 2008;59:651–81. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- 40. Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51(2):163–90. https://doi.org/10.1007/s11099-013-0021-6
- 41. Watson DJ. The physiological basis of variation in yield. Adv Agron. 1952;4:101–45. https://doi.org/10.1016/S0065-2113(08)60307-7
- 42. Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W. The critical role of extreme heat for maize production in the United States. Nat Clim Change. 2014;3(5):497–501. https://doi.org/10.1038/nclimate1832
- 43. Arora JS, Khanna K. Introductory ornamental horticulture. Kalyani publishers. 2010.
- 44. Singh AK, Patil VK, Sharma RR. Flower induction in ornamental plants: Physiology and practices. J Appl Nat Sci. 2017;9(3):1720–30.
- 45. Hertogh AD, Nard ML. The physiology of flower bulbs. A comprehensive treatise on the physiology and utilization of ornamental flowering bulbous and tuberous plants. 1993.
- 46. Halevy AH, Mayak S. Senescence and postharvest physiology of cut flowers—Part 2. Hortic Rev 1981;3:59–143. https://doi.org/10.1002/9781118060766#page=69
- 47. Nowak J, Rudnicki RM. Postharvest handling and storage of cut flowers, florist greens and potted plants. Timber Press. 1990.
- 48. Roh M, Lee Y, Kim H, Lee K, Bae J. Development of nutrient solution suitable for closed system in substrate culture of cucumber. J Biol Prod Facil Environ Control (Korea Republic). 1997.
- 49. Amel A, Nir Gavish, Liang Zhu, Dario R. Dekel, Michael A Hickner, Ein-Eli Y. Bicarbonate and chloride anion transport in anion exchange membranes. J Mem Sci. 2016;514:125-34. https://doi.org/10.1016/j.memsci.2016.04.027
Downloads
Download data is not yet available.