Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Morphometric and phytochemical analysis of Ximenia americana L. fruits harvested from Amrabad Tiger Reserve Forest of India

DOI
https://doi.org/10.14719/pst.9203
Submitted
29 April 2025
Published
09-08-2025
Versions

Abstract

The present investigation involved phytochemical screening of wild plum to evaluate its phytoconstituents. The fruits exhibited a total phenolic content of 1.24 mg/100 g (as gallic acid equivalent) and a total flavonoid content of 79.27 mg/100 g (as quercetin equivalent). The average fruit weight was 7.12 g, ranging from 6.55 to 7.83 g. the weights of the peel, pulp, pit and seed were 3.51 g, 1.31 g, 0.30 g and 0.92 g respectively. The average fruit length was 23.26 mm, while pulp thickness and peel thickness measured 0.21 mm and 2.40 mm respectively. Pit thickness was recorded at 0.51 mm. The equatorial, polar, apical and basal diameters of fruits were 20.72 mm, 21.52 mm, 16.83 mm and 17.92 mm respectively. The pulp color parameters included lightness (L*) value of 44.40, a* value of 22.93 and b* value of 36.91. The leaf area was calculated to be 8.99 cm², with a length of 3.28 cm and a width of 3.36 cm, resulting in a leaf length-to-width ratio of 0.97. Fruit extract concentration of 10, 30 and 50 μg showed free radical scavenging activities of 2.82 %, 4.08 % and 5.38 %. About 38 secondary metabolites were identified in methanolic extract of fruits, including phenols, alkaloids, glycosides, flavonoids, lignans, terpenoids, naphthoquinones, saponins, hydrolyzable tannins and steroids. Hepato-protective and antiviral properties, as well as neuroprotective properties, were demonstrated by the methyl ester 3,4-di-o-caffeoylquinic acid, iridoid glycosides like 6-o-trans-feruloylgenipin gentiobioside, 10-(6-o-trans sinapoylglucopyranosyl) gardendiol, as well as a neo chlorogenic acid 3-caffeoyl quinic acid, respectively. Understanding these bioactive benefits highlights the potential for commercial cultivation of wild plum, moving beyond traditional wild collection to meet the requirements of the country.

References

  1. 1. Kefelegn GA, Desta B. Ximenia americana: Economic importance, medicinal value, and current status in Ethiopia. Sci World J. 2021;1:8880021.
  2. 2. Aragao TP, Prazeres LDKTD, Brito SA, Neto PJR, Rolim LA, Almeida JRGDS, et al. Contribution of secondary metabolites to the gastroprotective effect of aqueous extract of Ximenia americana L. (Olacaceae) stem bark in rats. Molecules. 2018;23(1):112. https://doi.org/10.3390/molecules23010112
  3. 3. Mwangi JW, Malii P, Gathu L, Tanaka T, Nonaka G. Polyphenols of Ximenia americana var. caffra. Fitoterapia, 1994;65(2):185.
  4. 4. De Menezes IRA, Da Costa RHS, Augusti Boligon A, Rolón M, Coronel C, Vega C, et al. Ximenia americana L. enhances the antibiotic activity and inhibit the development of kinetoplastid parasites. Comp Immunol Microbiol Infect Dis. 2019;64:40-46. https://doi.org/10.1016/j.cimid.2019.02.007
  5. 5. Freiberger CE, Vanderjagt DJ, Pastuszyn A, Glew RS, Mounkaila G, Millson M, Glew RH. Nutrient content of the edible leaves of seven wild plants from Niger. Plant Foods Hum Nutr.1998;53:57-69. https://doi.org/10.1023/A:1008080508028
  6. 6. Le NHT, Malterud KE, Diallo D, Paulsen BS, Nergård CS, Wangensteen H. Bioactive polyphenols in Ximenia americana and the traditional use among Malian healers. J Ethnopharmacol. 2012;139(3):858-62. https://doi.org/10.1016/j.cimid.2019.02.007
  7. 7. Ngeiywa M, Rotich C, Makwali J, Wetungu M. Medicinal uses and pharmacological activity of Ximenia americana L.- A systematic review. Afr J Edu Sci Technol. 2024;8(1):179.
  8. 8. Teo SP. Root hemi-parasitism in Malayan Olacaceae. Gardens’ Bulletin Singapore, 7-13. 1997.
  9. 9. Kone WM, Atindehou KK, Terreaux C, Hostettmann K, Traoré D, Dosso M. Traditional medicine in North Côte-d’Ivoire: Screening of 50 medicinal plants for antibacterial activity. J Ethnopharmacol. 2004;93(1):43-49. https://doi.org/10.1016/j.jep.2004.03.006
  10. 10. Omer MEFA, Elnima EI. Antimicrobial activity of Ximenia americana. Fitoterapia. 2003;74(1-2):122-26. https://doi.org/10.1016/S0367-326X(02)00302-7
  11. 11. Nambi EV, Thangavel K, Shahir S, Geetha V. Evaluation of colour behavior during ripening of Banganapalli mango using CIE-Lab and RGB colour coordinates. J Appl Hortic. 2015;17(3):205-209.
  12. 12. Dirar AI, Alsaadi DH, Wada M, Mohamed MA, Watanabe T, Devkota HP. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany. 2019;120:261-267. https://doi.org/10.1016/j.sajb.2018.07.003
  13. 13. Chandra S, Khan S, Avula B, Lata H,Yang MH, ElSohly MA, Khan IA. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid Based Complement Alternat Med. 2014;1:253875. https://doi.org/10.1155/2014/253875
  14. 14. Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  15. 15. Hung-Ju C, Baskaran SI, Bing-Huei C. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry coupled with a post-column derivatization technique. Int J Mol Sci. 2012;13(1):260-85. https://doi.org/10.3390/ijms13010260
  16. 16. Casuga FP, Castillo AL, Corpuz MJAT. GC-MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves. Asian Pac J Trop Biomed. 2016;6(11):957-61. https://doi.org/10.1016/j.apjtb.2016.08.015
  17. 17. Bazezew AM, Emire SA, Sisay MT. Bioactive composition, free radical scavenging and fatty acid profile of Ximenia americana grown in Ethiopia. Heliyon. 2021;7(6):e07187. https://doi.org/10.1016/j.heliyon.2021.e07187
  18. 18. Rego ERD, Cabral LGDS, Pessoa AMDS, Moreira Filho JE, Batista FRDC, Rego MMD. Genetic variability of wild yellow plum (Ximenia americana L.) based on rapd markers. Revista Caatinga. 2024;38.e11873. https://doi.org/10.1590/1983-21252025v3811873rc
  19. 19. Mora VHF, Franco-Mora O, Lopez-Sandoval JA, de Jesus Perez-Lopez D, Balbuena-Melgarejo A. Characterization of wild plum (Ximenia americana L. var. americana; Olacaceae) fruit growing at Tepexi de Rodríguez, Puebla, Mexico. Genet Resour Crop Evol. 2009;56(5):719-27. https://doi.org/10.1007/s10722-009-9422-6
  20. 20. Sarmento JDA, De Morais PLD, De Souza FI, De Miranda MRA. Physical-chemical characteristics and antioxidant potential of seed and pulp of Ximenia americana L. from the semiarid region of Brazil. Afr J Biotechnol. 2015;14(20):1743-52. https://doi.org/10.5897/AJB2015.14452
  21. 21. Almeida MLB, De Souza FWE, De Morais PLD, Sarmento JDA, Alves RE. Bioactive compounds and antioxidant potential fruit of Ximenia americana L. Food Chem. 2016;192:1078-82. https://doi.org/10.1016/j.foodchem.2015.07.129
  22. 22. Feng J, Zheng Y, Guo M, Ares I, Martinez M, Lopez-Torres B, et al. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B. 2023:13(10):3988-4024. https://doi.org/10.1016/j.apsb.2023.07.010
  23. 23. Stavely R, Ott LC, Sahakian L, Rashidi N, Sakkal S, Nurgali K. Oxidative stress and neural dysfunction in gastrointestinal diseases: Can stem cells offer a solution? Stem Cells Transl Med. 2023;12(12):801-10. https://doi.org/10.1093/stcltm/szad063
  24. 24. Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential implications of hyperoside on oxidative stress-induced human diseases: A comprehensive review. J Inflamm Res. 2023;16:4503-26. https://doi.org/10.2147/JIR.S418222
  25. 25. Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother. 2023;167:115475. https://doi.org/10.1016/j.biopha.2023.115475
  26. 26. Silva KDRR, Sirasa MSF. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 2018;238:203-208. https://doi.org/10.1016/j.foodchem.2016.08.102
  27. 27. Dahiru MM, Alfa MB, Abubakar MA, Abdulllahi AP. Assessment of in silico antioxidant, anti-inflammatory, and antidiabetic activites of Ximenia americana L. Olacaceae. AMPDR. 2024;4(1):1-13. http://dx.doi.org/10.21622/AMPDR.2024.04.1.735
  28. 28. Bayer H, Noreen Ey, Wattenberg A, Voss C, Berger MR. Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr Purif. 2012;82(1):97-105. https://doi.org/10.1016/j.pep.2011.11.018
  29. 29. Goosen NJ, Oosthuizen D, Stander MA, Dabai AI, Pedavoah MM, Usman GO. Phenolics, organic acids and minerals in the fruit juice of the indigenous African sourplum (Ximenia caffra, Olacaceae). S Afr J Bot. 2018;119:11-16. https://doi.org/10.1016/j.sajb.2018.08.008
  30. 30. Sanchez-Gutierrez JA, Vazquez-Sanchez M, Alvarez-Bernal D, Mares-Quinones MD, Valiente-Banuet JI, Medina-Medrano JR, Villar-Luna E. Determination of phenolic compounds and the antioxidant capacity of Ximenia parviflora Benth. var. parviflora (Olacaceae) fruit by high-performance liquid chromatography with diode array detection. Anal Lett. 2018;51(13):1986-98. https://doi.org/10.1080/00032719.2017.1404094

Downloads

Download data is not yet available.