Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Trait profiling for yield improvement in Indian mustard using multivariate and radar plot analyses

DOI
https://doi.org/10.14719/pst.9222
Submitted
30 April 2025
Published
14-08-2025 — Updated on 28-08-2025
Versions

Abstract

The study was performed to estimate genetic variability, selection parameters, principal component analysis (PCA) and radar plot (spider) analysis using 55 genotypes which were evaluated during Rabi season 2023-2024 at the Crop Research Centre, Sardar Vallabhbhai Patel
University of Agriculture and Technology, Meerut, for 13 traits with three replications. The analysis of variance (ANOVA) revealed highly significant differences for all traits. A higher phenotypic coefficient of variation (PCV) was observed compared to the genotypic coefficient of variation (GCV) for the respective traits. High PCV and GCV values were recorded for seed yield and harvest index. High genetic advance coupled with high heritability was observed for seed yield, number of branches on the main raceme, test weight and siliqua length. Radar plot analysis revealed significant multi-trait variability among the traits. At both genotypic and phenotypic levels, seed yield revealed a positive significant association with number of siliquae on the main raceme, length of main raceme, siliqua length, seeds per siliqua and test weight. A high direct effect on seed yield was observed through harvest index and biological yield in path coefficient analysis. The cumulative percentage of explained variance by the three principal components with Eigenvalues greater than one was 80.15 %. Radar plot analysis revealed that the genotype RH-725 × Pusa Agrani and Pusa Agrani × CS-60 were identified as promising high-yielding and high
oil content, respectively. The study revealed that traits such as seed yield, test weight, harvest index, siliqua length and genotypes RH-725 × Pusa Agrani, RH-725 × Kranti, Pusa Agrani × CS-60 and Pusa Bold × CS-60 can be further used for breeding programs.

References

  1. 1. Lin LZ, Sun J, Chen P, Harnly J. UHPLC-PDA-ESI/HRMS/MSn analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). J Agric Food Chem. 2011;59(22):12059-72. https://doi.org/10.1021/ jf202 556p
  2. 2. Choudhury S, Asrani P, Kashyap A, Rao M, Prasad K, Pant U. Whole genome resequencing of advanced introgression lines of Brassica juncea L. Czern. for characterizing alien introgression from Diplotaxis erucoides L. DC. Indian J Genet Plant Breed. 2023;83:217-23. https://doi.org10.31742/ISGPB.83.2.7
  3. 3. Mei J, Liu J, Yue F, Chen Y, Ming J, Xiong Z, et al. Broadening the genetic base of Brassica juncea by introducing genomic components from B. rapa and B. nigra via digenomic allohexaploid bridging. Crop J. 2022;10(3):672-79. https://doi.org/10.1016/j.cj.2021.09.008
  4. 4. Mohd Saad, NS, Severn-Ellis AA, Pradhan A, Edwards D, Batley J. Genomics armed with diversity leads the way in Brassica improvement in a changing global environment. Front Genet. 2021;12:600789. https://doi.org/10.3389/fgene.2021.600789
  5. 5. Redden R, Vardy M, Edwards D, Raman H, Batley J. Genetic and morphological diversity in the Brassicas and wild relative. In: 16th Australian research assembly on Brassicas, Ballarat, Victoria. 2009.p. 1-5.
  6. 6. Yu JC, Jiang ZT, Li R, Chan SM. Chemical composition of the essential oils of Brassica juncea (L.) Coss. grown in different regions, Hebei, Shaanxi and Shandong of China. J Food Drug Ana. 2003;11(1):22-26. https://doi.org/10.38212/2224-6614.2729
  7. 7. Campbell B, Han DY, Triggs CM. Brassicaceae, nutrient analysis and investigation of tolerability in people with Crohn’s disease in a New Zealand study. J Funct Foods Health Dis. 2012;2(11):460-86. https://doi.org/10.31989/ffhd.v2i11.70
  8. 8. Jaiswal SK, Prakash R, Acharya R, Reddy AVR, Prakasha NT. Selenium content in seed, oil and oil cake of Se hyperaccumulated Brassica juncea (Indian mustard) cultivated in a seleniferous region of India. Food Chem. 2012;134(1):401-404. https://doi.org/10. 1016/j. foodchem. 2012.02.140
  9. 9. Tian, Deng F. Phytochemistry and biological activity of mustard (Brassica juncea): A review, CyTA. J Food. 2020;18(1):704-18. https://doi.org/10.1080/19476337.2020.1833988
  10. 10. Jinks JL, Jones RM. Estimation of the components of heterosis. Genetics. 1958;43:223-34.
  11. 11. Shull GH. Beginnings of the heterosis concept. Heterosis.1952;23:31-33.
  12. 12. Kumar A, Singh M, Sharma R. Multivariate analysis of genetic diversity in Indian mustard (Brassica juncea L.) based on agro-morphological traits. J Oilseed Brassica. 2021;12(1):34-40. https://doi.org/10.1007/978-3-030-34694-2_11
  13. 13. Goyal V, Kumari A, Avtar R, Baliyan V, Mehrotra S. Orthosilicic acid and seaweed extract alleviate the deteriorative effects of high temperature stress in Brassica juncea (L.) Czern & Coss. Silicon. 2023;15(11):4909-19. https://doi.org/10.1007/s12633-023-02376-9
  14. 14. MOA, FW. State-wise varieties of rapeseed: Mustard crop notified under seed act from 2008-2019. Directorate of oilseeds development, Government of India. [cited 2025 May 21], Available from: https://oilseeds.dac.gov.in/Rapeseed.aspx
  15. 15. RMselect Farmer’s Choice. [cited 2025 May 21], Available from: https://www.drmr.in/rmv/selectRMvariety.php
  16. 16. Burton GW. Quantitative inheritance in grasses. Proc 6th Int. Grasslar 1 Cong. 1952;1:227-83.
  17. 17. Falconer DS, Fctm. Introduction to quantitative genetics ,England, UK: Longman Group Ltd, 1996.
  18. 18. Robinson HF. Quantitative genetics in relation to breeding of the centennial of Mendalism. Indian J Genet Plant Breed. 1966;26:171-87.
  19. 19. Allard RW. Principles of plant breeding. John Wiley and Sons Inc., New York. 1960.
  20. 20. Johnson HW, Robinson HF, Comstock RE. Genotypic and phenotypic correlations in soybeans and their implications in selection. Agronomy J. 1955;47(10):477-83. https://doi.org/10.2134/agronj1955.00021962004700100008x
  21. 21. Al‐Jibouri H, Miller PA, Robinson HF. Genotypic and environmental variances and covariances in an upland cotton cross of interspecific origin. Agron J. 1958;50(10):633-36. https://doi.org/10.2134/agronj1958.00021962005000100020x
  22. 22. Dewey DI, Lu KH. A correlation and path-coefficient analysis of components of crested wheat grass seed production. Agron J. 1959;51:515-18. http://dx.doi.org/10.2134/agronj1959.00021962005100090002x
  23. 23. Nakazawa M. Functions for medical statistics book with some demographic data. R package version 0.7.6. 2024.
  24. 24. Kumar A, Singh RS, Kumar M, Kumari J, Kishore C. Genetic variability, correlation and path analysis in Indian mustard under late sown condition. Annals Plant Soil Res. 2023;25(4):681-87. https://doi.org/10.47815/apsr.2023.10322
  25. 25. Singh S, Dwivedi AK, Ashutosh OM, Kumar K. Genotypic variability, heritability and genetic advance in Indian mustard (Brassica juncea L. Czern & Coss) genotypes. J Pharmacog Phytochem. 2018;7(3):350-52.
  26. 26. Gupta A, Chauhan S, Tyagi SD, Singh S. Genetic variability, heritability, genetic advance and cluster analysis in Indian mustard (Brassica juncea L. Czern & Coss.) under timely and late sown conditions. Int J Plant Soil Sci. 2023;35(19):292-301. https://doi.org/10.9734/IJPSS/2023/v35i193554
  27. 27. Mandal K, Ghosh A, Dasgupta T, Kundagrami S. Genetic variability and trait association in Indian mustard [Brassica juncea (L.) Czern &Coss]. Agric Sci Digest. 2022;42(5):580-85. http://dx.doi.org/10.18805/ag.D-5550
  28. 28. Shrivastava A, Tripathi MK, Solanki RS, Tiwari S, Tripathi N, Singh J, et al. Genetic correlation and path coefficient analysis of yield attributing parameters in Indian mustard. Curr J Appl Sci Tech. 2023;42(7):42-58. https://doi.org/10.9734/IJECC/2023/v13i92298
  29. 29. Kumar R, Kaur S, Bala K, Kaur S, Sharma L. Assessment of genetic variability, correlation and path analysis for yield traits in F1 hybrids of Indian mustard (Brassica juncea L.). Agriways. 2019;7(1):1-7.
  30. 30. Rathore RK. Path coefficient analysis in mustard (Brassica juncea L.). Int J Phytology Res. 2023;3(3):01-03.
  31. 31. Sikarwar RS, Satankar N, Kushwah MK, Singh AK. Genetic variability, heritability and genetic advance studies in yellow sarson (Brassica rapa var. Yellow Sarson). Int J Agric Innov Res. 2017;5(5):831-33.
  32. 32. Devi SA, Barua PK, Phukan A. Assessment of genetic variability for seed yield and related traits in some mutant and non-mutant lines of Indian mustard (Brassica juncea L.). J Exp Agric Int. 2024;46(4):48-55.
  33. 33. Gadi J, Chakraborty R, Imam Z. To study the genetic variability, heritability and genetic advance for different quantitative characters in Indian mustard (Brassica juncea L. Czern & Coss). Int J Curr Microbiol Appl Sci. 2020;9(10):1557-63. https://doi.org/10.20546/ijcmas.2020.910.186
  34. 34. Priyamedha ZA, Kumar A, Ram B, Kumar A, Singh VV, Rai PK. Analysis of genetic parameters and correlation for yield and quality traits in Indian mustard (Brassica juncea L.). J Oilseed Brassica. 2018;9(2):146-50. http://srmr.org.in/ojs/index.php/job/article/view/310
  35. 35. Kumar A, Chauhan R, Singh KP. Genetic variability, heritability and genetic advance among Indian mustard (Brassica juncea) genotypes. Annals Plant Soil Res. 2020;22(1):92-95.
  36. 36. Sowmya D, Delvadiya IR, Ginoya AV. Genetic variability, correlation, path coefficient and cluster analysis in Indian mustard (Brassica juncea L.). Electron J Plant Breed. 2024;15(1):201-208. https://doi.org/10.37992/2024.1501.019
  37. 37. Awasthi D, Tiwari V, Kandalkar VS. Evaluation of heritability and genetic advance for morphological traits of Indian mustard germplasms. Curr J Appl Sci Tech. 2020;39(21):39-47. https://doi.org/10.9734/cjast/2020/v39i2130820
  38. 38. Yan W, Rajcan I. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci. 2002;42(1):11-20. https://doi.org/10.2135/cropsci2002.1100
  39. 39. Evangelin KM, Mawlong I, Kumar A, Yadav AP. Studies on inter-relationship and path coefficient analysis for seed yield/plant and qualitative traits in Indian mustard (Brassica juncea L. Czern and Coss). Int J Plant Soil Sci. 2022;34(24):869-74. https://doi.org/10.9734/ijpss/2022/v34i242712
  40. 40. Nandi S, Rout S, Sur B, Chakraborty M, Hijam L, Roy SK, Gupta A. Assessment of genetic parameters, trait association and diversity analysis in Indian mustard (Brassica juncea L. Czern. and Coss.). Biol Forum-An Int J. 2021;13(2):95-109.
  41. 41. Kaur RKR, Kaur L. Genetic variation for yield characters of F1 hybrids in Indian mustard (Brassica juncea L.). J Oilseed Brassica. 2019;10(2):117-21. https://epubs.icar.org.in/index.php/JOB/article/view/158558
  42. 42. Dawar S, Kumar N, Mishra SP. Genetic variability, correlation and path coefficient analysis in the Indian mustard (Brassica juncea L. Czern. and Coss.) varieties grown in Chitrakoot, India. Int J Curr Microbiol Appl Sci. 2018;7(03):883-90. https://doi.org/10.20546/ijcmas.2018.703.103
  43. 43. Devi B. Correlation and path analysis in Indian mustard (Brassica juncea L.) in agro-climatic condition of Jhansi (UP). J Pharmacog Phytochem. 2018;7(1):1678-81.
  44. 44. Rout S, Kerkhi SA, Chauhan C. Character association and path analysis among yield components in Indian mustard (Brassica juncea L. Czern. and Coss.). IntJ Curr Microbiol Appl Sci. 2017;7(1):50-55. https://doi.org/10.20546/ijcmas.2018.701.007
  45. 45. Dwivedi S, Singh M, Yadav RK, Saini PK, Tripathi H. Correlation and path analysis for seed yield and its component traits in Indian mustard (Brassica juncea L. Czern and Coss.). Int J Environ Clim Change. 2023;13(11):1044-54. https://doi.org/10.9734/ijecc/2023/v13i113253
  46. 46. Adhikari A, Punetha H, Pant U. Genetic diversity analysis using agro-morphological traits of Brassica juncea subspecies rugosa (Pahari rai) from North-Eastern Himalayan region. Electron J Plant Breed. 2022;13(3):790-99. http://dx.doi.org/10.37992/2022.1303.106
  47. 47. Ghosh S, Avinashe H, Dubey N, Sharadhi GP, Danalakoti K, Sachan S, et al. PCA-based multivariate approach for segmentation of variance in Indian mustard [Brassica juncea (L) Czern & Coss]. SABRAO J Breed Genet. 2023;55(6):1963-71. https://doi.org/10.54910/sabrao2023.55.6.10
  48. 48. Neeru N, Thakral NK, Avtar R, Singh A. Evaluation and classification of Indian mustard (Brassica juncea L.) genotypes using principal component analysis. Journal of Oilseed Brassica. 2015;6(1):167-74.
  49. 49. Zhu R, Sun K, Yan Z, Yan X, Yu J, Shi J, et al. Analysing the phenotype development of soybean plants using low-cost 3D reconstruction. Scientific Reports. 2020;10(1):7055. https://doi.org/10.1038/s41598-020-63720-2

Downloads

Download data is not yet available.