Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Evaluation of growth, yield and economics of Stevia rebaudiana Bertoni under partial shade in a teak-based agroforestry system in the sub-tropical region of Madhya Pradesh

DOI
https://doi.org/10.14719/pst.9237
Submitted
1 May 2025
Published
26-08-2025 — Updated on 23-09-2025
Versions

Abstract

Stevia rebaudiana, a perennial herb prized for its steviol glycosides, is increasingly being cultivated as a natural sweetener. In India, the annual demand for this herb is estimated at approximately 10 metric tons. However, the relationship between agronomic practices and agroforestry systems on leaf yield and economic viability in tropical climates remains underexplored. This study evaluated the effects of spacing and organic amendments on growth, productivity in a teak-based agroforestry system in Central India. A field experiment was conducted in a randomized block design with a factorial concept under a teak-based agroforestry model at the Non Wood Forest Produce (NWFP) nursery, Indian Council of Forestry Research and Education - Tropical Forest Research Institute (ICFRE-TFRI), Jabalpur, Madhya Pradesh. The treatments included plant spacing (S1: 45 × 45 cm, S2: 30 × 30 cm, S3: 20 × 20 cm) and organic nutrient regimes (M7: farmyard manure (FYM) + vermicompost (VC) + poultry manure (PM); M6; VC + PM; M5: FYM + PM; M4: FYM + VC; M3: PM; M2: FYM; M1: VC; M0: control). Growth parameters such as plant height, branch number and leaf count were recorded, along with biomass yield (fresh and dry weight). Economic viability was assessed through input-output ratios. The results indicated enhanced plant height, branching and leaf count per
plant under M7. Spacing S3 yielded the maximum fresh and dry biomass. Economic analysis revealed that S3 and M7 are cost-effective with higher net returns. These findings underscore that integrating teak agroforestry and organic amendments enhances both yields, offering a sustainable model for tropical stevia cultivation. This study provides actionable insights into agronomic practices to balance productivity, metabolite quality and profitability in resource-constrained systems.

References

  1. 1. Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012;132(3):1121-32. https://doi.org/10.1016/j.foodchem.2011.11.140
  2. 2. Mandal S, Evelin H, Giri B, Singh VP, Kapoor R. Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside- A in Stevia rebaudiana via nutritional and non-nutritional mechanism. Appl Soil Ecol. 2013;72:187-94. https://doi.org/10.1016/j.apsoil.2013.07.003
  3. 3. Yadav AK, Singh S, Dhyani D, Ahuja PS. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can J Plant Sci. 2011;91(1):1-27. https://doi.org/10.4141/cjps10086
  4. 4. Philippaert K, Pironet A, Mesuere M, Sones W, Vermeiren L, Kerselaers S, et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun. 2017;8(1):14733. https://doi.org/10.1038/ncomms14733
  5. 5. Malik VS, Li Y, Pan A, De Koning L, Schernhammer E, Willett WC, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113-25. https://doi.org/10.1161/circulationaha.118.037401
  6. 6. Mordor intelligence. Mordor intelligence [Internet]. [cited 2025 Mar 25]. Available from: https://www.mordorintelligence.com/
  7. 7. Pal P, Kumar R, Guleria V, Mahajan M, Prasad R, Pathania V, et al. Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biol. 2015;15(1):67. https://doi.org/10.1186/s12870-015-0457-x
  8. 8. Ciriminna R, Pecoraino M, Meneguzzo F, Pagliaro M. A bioeconomy perspective for natural sweetener stevia. Biofuels Bioprod Biorefining. 2018;13:445–52. https://doi.org/10.1002/bbb.1968
  9. 9. Pedroza W, Zanco JJ, Carlos A, Bonaldo SM, Uhdre RS. Stevia rebaudiana: Reporting data from the sweetener crop for researchers and smallholder farming assistants. Acta Sci Agron. 2024;46(1):e71752. https://doi.org/10.4025/actasciagron.v46i1.71752
  10. 10. National Medicinal Plants Board. National Medicinal Plants Board [Internet] 2025. [cited 2025 Mar 28]. Available from: https://nmpb.nic.in/
  11. 11. Solomon S. The Indian sugar industry: An overview. Sugar Tech. 2011;13(4):255-65. https://doi.org/10.1007/s12355-011-0115-z
  12. 12. Solomon S, Swapna M. Indian Sugar industry: Towards self-reliance for sustainability. Sugar Tech. 2022;24(3):630-50. https://doi.org/10.1007/s12355-022-01123-5
  13. 13. Kashyap D, Agarwal T. Food loss in India: Water footprint, land footprint and GHG emissions. Environ Dev Sustain. 2019;22(4):2905-18. https://doi.org/10.1007/s10668-019-00325-4
  14. 14. Nair PKR. State-of-the-art of agroforestry research and education. Agrofor Syst. 1993;23:95-119. https://doi.org/10.1007/BF00704909
  15. 15. Jose S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor Syst. 2009;76(1):1-10. https://doi.org/10.1007/s10457-009-9229-7
  16. 16. Torquebiau EF. A renewed perspective on agroforestry concepts and classification. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie. 2000;323(11):1009-17. https://doi.org/10.1016/s0764-4469(00)01239-7
  17. 17. Albrecht A, Kandji ST. Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ. 2003;99(1-3):15-27. https://doi.org/10.1016/S0167-8809(03)00138-5
  18. 18. Dhyani SK, Handa AK. Agroforestry in India and its potential for ecosystem services. In: Dagar J, Singh A, Arunachalam A, editors. Agroforestry systems in India: Livelihood security & ecosystem services. Advances in Agroforestry, vol 10. Springer: New Delhi. 2014. p. 345-65. https://doi.org/10.1007/978-81-322-1662-9_11
  19. 19. Adekiya AO, Ejue WS, Olayanju A, Dunsin O, Aboyeji CM, Aremu C, et al. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci Rep. 2020;10(1):1-9. https://doi.org/10.1038/s41598-020-73291-x
  20. 20. Rao MR, Nair PKR, Ong CK. Biophysical interactions in tropical agroforestry systems. Agrofor Syst. 1998;38(1-3):3-50. https://doi.org/10.1023/A:1005971525590
  21. 21. Gomez KA, Gomez AA. Statistical procedures for agricultural research. John Wiley & Sons; 1984. https://doi.org/10.1017/s001447970001449622
  22. 22. Verma PP, Kumar A, Padalia RC, Singh VR. Influence of NPK levels on growth and yield of Stevia rebaudiana Bertoni under hills of Uttarakhand. Indian J Nat Prod Resour (IJNPR). 2020;11(1):66-72.
  23. 23. Das SK, Baruah K, Avasthe R, Kundu MC, Choudhury BU, Baruah K, et al. Innovative biochar and organic manure co-composting technology for yield maximization in maize-black gram cropping system. Biomass Convers Biorefin. 2021;13(9):7797-809. https://doi.org/10.1007/s13399-021-01519-5
  24. 24. Yatoo AM, Ali MN, Bhat SA, Baba ZA, Zaheen Z. Production of nutrient-enriched vermicompost from aquatic macrophytes supplemented with kitchen waste: Assessment of nutrient changes, phytotoxicity and earthworm biodynamics. Agronomy. 2022;12(6):1303. https://doi.org/10.3390/agronomy12061303
  25. 25. Dhaliwal SS, Sharma S, Sharma V, Shukla AK, Walia SS, Alhomrani M, et al. Long-term integrated nutrient management in the maize-wheat cropping system in alluvial soils of north-western India: Influence on soil organic carbon, microbial activity and nutrient status. Agronomy. 2021;11(11):2258. https://doi.org/10.3390/agronomy11112258
  26. 26. Pereira ML, Hall AJ. Sunflower oil yield responses to plant population and row spacing: Vegetative and reproductive plasticity. Field Crops Res. 2018;230:17-30. https://doi.org/10.1016/j.fcr.2018.09.014
  27. 27. Zaman I, Ali M, Shahzad K, Tahir MS, Matloob A, Ahmad W, et al. Effect of plant spacings on growth, physiology, yield and fiber quality attributes of cotton genotypes under nitrogen fertilization. Agronomy. 2021;11(12):2589. https://doi.org/10.3390/agronomy11122589
  28. 28. Kumar R, Sharma S, Prasad R. Yield, nutrient uptake and quality of stevia as affected by organic sources of nutrient. Commun Soil Sci Plant Anal. 2013;44(21):3137-49. https://doi.org/10.1080/00103624.2013.832285
  29. 29. Tansı LS, Samadpourrigani E, Gedik S. Effects of different plant density and cutting times on yield of stevia under the Çukurova conditions. Int J Second Metabol. 2017;4(3, Special Issue 2):355-58. https://doi.org/10.21448/ijsm.373822
  30. 30. Kumar R, Sharma S, Sood S, Prasad R, Dubey YP. Bioorganic nutrient source effect on growth, biomass and quality of natural sweetener plant stevia and soil fertility in the Western Himalayas. Commun Soil Sci Plant Anal. 2015;46(9):1170-86. https://doi.org/10.1080/00103624.2015.1033545
  31. 31. Asghari R. Effect of different plant beds and fertilizers on stevia (Stevia rebaudiana Bertoni) production. Aust J Crop Sci. 2018;12(1):51-55. https://doi.org/10.21475/ajcs.18.12.01.pne643
  32. 32. Zaman MM, Chowdhury T, Nahar K, Chowdhury MAH. Effect of cow dung as organic manure on the growth, leaf biomass yield of Stevia rebaudiana and post-harvest soil fertility. J Bangladesh Agric Univ. 2017;15(2):206-11. https://doi.org/10.3329/jbau.v15i2.35064
  33. 33. Smith OM, Reganold JP, Crowder DW, Orpet RJ, Rieser CJ, Meier AR, et al. Organic farming provides reliable environmental benefits but increases variability in crop yields: A global meta-analysis. Front Sustain Food Syst. 2019;3:00082. https://doi.org/10.3389/fsufs.2019.00082
  34. 34. Casaroli D, Quirino DT, Júnior JA, Battisti R, Evangelista AWP, Mesquita M, et al. How agrometeorological and water deficit variations influence the growth and yield of sugarcane? Aust J Crop Sci. 2023;17(09):741-52. https://doi.org/10.21475/ajcs.23.17.09.p3999
  35. 35. Zhang G, Hou P, Li R, Xue J, Shen D, Xie R, et al. Optimizing planting density to improve nitrogen use of super high-yield maize. Agron J. 2020;112(5):4147-58. https://doi.org/10.1002/agj2.20334
  36. 36. Ali N, Ahmad N, Khan MN, Ijaz S, Abdullah M, Ashraf MS, et al. Influence of different organic manures and their combinations on productivity and quality of bread wheat. J Soil Sci Plant Nutr. 2020;20(4):1949-60. https://doi.org/10.1007/s42729-020-00266-2
  37. 37. Lakshmanan S, Somasundaram S, Shri Rangasami S, Anantharaju P, Vijayalakshmi D, Ragavan T, et al. Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants. J Cotton Res. 2025;8(1):s42397. https://doi.org/10.1186/s42397-024-00202-0
  38. 38. Selim MM. Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. Int J Agron. 2020;2020:2821678. https://doi.org/10.1155/2020/2821678
  39. 39. Arif M, Shah S, Wang H, Ali S, Ilyas M, Ali K, et al. Enhancing phosphorus availability, soil organic carbon, maize productivity and farm profitability through biochar and organic-inorganic fertilizers in an irrigated maize agroecosystem under semi-arid climate. Soil Use Manag. 2020;37(1):104-19. https://doi.org/10.1111/sum.12661
  40. 40. Umesha K, Smitha GR, Sreeramu BS, Waman AA. Organic manures and bio-fertilizers effectively improve yield and quality of stevia (Stevia rebaudiana). J Appl Hortic. 2011;13(2):157-62. https://doi.org/10.37855/jah.2011.v13i02.36
  41. 41. Shivani K, Gautam G. Influence of different levels of nitrogen on yield and economics of stevia (Stevia rebaudiana Bertoni) under different planting geometry. Int J Chem Stud. 2019;7(3):806-809.

Downloads

Download data is not yet available.