Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Unveiling the antioxidant potential of Curcuma amada Roxb. leaf essential oil : An in silico and in vitro investigation of major constituents

DOI
https://doi.org/10.14719/pst.9249
Submitted
2 May 2025
Published
21-08-2025 — Updated on 16-09-2025
Versions

Abstract

Elevated levels of human peroxiredoxin 5 (Prdx5), a cytoprotective antioxidant enzyme protects cellular compartments from oxidative damage induced by peroxides. In recent years, essential oils are regarded a viable source of non-toxic antioxidant substances with a higher safety profile. Curcuma species have been shown to inhibit lipid peroxidation levels and enhance antioxidant enzyme activities. Thus, the present study was designed to screen potential antioxidant agents from C. amada leaf essential oil (CALEO) to interact and support the Prdx5 enzyme activity using in vitro and computational approaches. The essential oil obtained from was chemically characterised using GC-MS. The analysis identified 36 constituents with camphor (17.51 %), spathulenol (12.00 %) and curdione (10.27 %) as the major constituents of CALEO. Moreover, the antioxidant effects of the oil were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS ) free radical scavenging assays, in which it demonstrated high DPPH (IC50 = 6.91 ± 0.04 μg/mL) and ABTS (IC50 = 5.86 ± 0.06 μg/mL) radical scavenging effects as compared to positive control. Subsequently, molecular docking analysis was
carried out between the key compounds of CALEO and Prdx5 protein. Amongst all, β caryophyllene, germacrone and ar -turmerone exhibited strong binding affinity (< -5.8 kcal/mol) against Prdx5 as compared to ascorbic acid (-5.3 kcal/mol). Furthermore, molecular dynamics
parameters such as RMSD (root mean square deviation), RMSF (root mean square fluctuation), Rg (radius of gyration), solvent accessible surface area (SASA), secondary structure and intermolecular H-bond plotted for the top scoring docked molecules indicated stability and
minimal fluctuations over a 100 ns simulation period. Molecular mechanics poisson-boltzmann surface area (MM/PBSA) analysis revealed that Vander Waals interactions were the major contributor for stabilizing the complexes. Additionally, chemical absorption distributionmetabolism- excretion-toxicity (ADMET) analysis was conducted that revealed favourable pharmacokinetic and toxicity profiles for the lead compounds. Density functional theory (DFT) analysis was performed to investigate global reactivity parameters including MEP (molecular electrostatic potential), ELF (electron localization function), LOL (local orbital locator) and NCI-RDG (non-covalent interactions-reduced density gradient) for β-caryophyllene, germacrone, ar-turmerone and ascorbic acid. Ar-turmerone and germacrone displayed a small energy gap and higher reactivity compared to ascorbic acid. These findings suggest that germacrone and ar-turmerone may serve as promising novel antioxidant agents.

References

  1. 1. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
  2. 2. Adardour M, Ait Lahcen M, Oubahmane M, Ettahiri W, Hdoufane I, Bouamama H, et al. Design, synthesis, molecular modeling and biological evaluation of novel pyrazole benzimidazolone derivatives as potent antioxidants. Pharmaceuticals. 2023;16(12):1648. https://doi.org/10.3390/ph16121648
  3. 3. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. https://doi.org/10.1155/2017/8416763
  4. 4. Andrés Juan C, Pérez de Lastra JM, Plou Gasca FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22:4642. https://doi.org/10.3390/ijms22094642
  5. 5. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89. http://dx.doi.org/10.59566/IJBS.2008.4089
  6. 6. Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochem Biophys Acta. 2013;1830:3217-66. https://doi.org/10.1016/j.bbagen.2012.09.018
  7. 7. Knoops B, Goemaere J, Van der Eecken V, Declercq JP. Peroxiredoxin 5: Structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Sig. 2011;15(3):817-29. https://doi.org/10.1089/ars.2010.3584
  8. 8. Walbrecq G, Wang B, Becker S, Hannotiau A, Fransen M, Knoops B. Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. Free Radic Biol Med. 2015;84:215-26. https://doi.org/10.1016/j.freeradbiomed.2015.02.032
  9. 9. Devcich DA, Pedersen IK, Petrie KJ. You eat what you are: Modern health worries and the acceptance of natural and synthetic additives in functional foods. Appetite. 2007;48 (3):333-37. https://doi.org/10.1016/j.appet.2006.09.014
  10. 10. Chen Y, Shukurova MK, Asikin Y, Kusano M, Watanabe KN. Characterization of volatile organic compounds in mango ginger (Curcuma amada Roxb.) from Myanmar. Metabolites. 2020;11(1):21. https://doi.org/10.3390/metabo11010021
  11. 11. Choudhary L, Rasool MA, Pounikar Y, Ahirwar DK, Jain R, Sahu S. In-silico investigation of various phytoconstituents present in mango ginger (Curcuma amada Roxb.) as antibacterial agents. Afr J Bio Sci. 2024;6(14):451-59. https://doi.org/10.48047/AFJBS.6.8.2024.450-459
  12. 12. Policegoudra RS, Aradhya SM, Singh L. Mango ginger (Curcuma amada Roxb.) – A promising spice for phytochemicals and biological activities. J Biosci. 2011;36(4):739–48. https://doi.org/10.1007/s12038-011-9106-1
  13. 13. Karmakar I, Dolai N, Saha P, Sarkar N, Bala A, Haldar PK. Scavenging activity of Curcuma caesia rhizome against reactive oxygen and nitrogen species. Orient Pharm Exp Med. 2011;11(4):221-28. https://doi.org/10.1007/s13596-011-0030-6
  14. 14. Hassan W, Gul S, Rehman S, Kanwal F, Afridi MS, Fazal H, et al. Gas chromatography coupled with mass spectrometric characterization of Curcuma longa: Protection against pathogenic microbes and lipid peroxidation in rat's tissue homogenate. Pak J Pharm Sci. 2016;29(2):615-21.
  15. 15. European Pharmacopoeia. European Pharmacopoeia Commission and European Directorate for the Quality of Medicines Healthcare 7th ed. 2010. Available from: https://www.edqm.eu/en/
  16. 16. Adams RP. Identification of essential oil components by gas chromatography/mass spectroscopy. 4th ed. Illinois (IL): Allured Publishing Corporation; 2007.
  17. 17. Jena S, Ray A, Banerjee A, Sahoo A, Nasim N, Sahoo S, et al. Chemical composition and antioxidant activity of essential oil from leaves and rhizomes of Curcuma angustifolia Roxb. Nat Prod Res. 2017;31(18):2188-91. https://doi.org/10.1080/14786419.2017.1278600
  18. 18. Guex N, Peitsch MC. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714-23. https://doi.org/10.1002/elps.1150181505
  19. 19. Herowati R, Widodo GP. Molecular docking studies of chemical constituents of Tinospora cordifolia on glycogen phosphorylase. Procedia Chem. 2014;13:63-68. https://doi.org/10.1016/j.proche.2014.12.007
  20. 20. Tasheh NS, Fouegue AD, Ghogomu JN. Investigation of the antioxidant and UV absorption properties of 2-(2’-hydroxy-5’-methylphenyl)-benzotriazole and its ortho-substituted derivatives via DFT/TD-DFT. Comput Chem. 2021;9(3):161-96. https://doi.org/10.4236/cc.2021.93010
  21. 21. Zochedh A, Priya M, Shunmuganarayanan A, Thandavarayan K, Sultan AB. Investigation on structural, spectroscopic, DFT, biological activity and molecular docking simulation of essential oil gamma-terpinene. J Mol Struct. 2022;1268:133651. https://doi.org/10.1016/j.molstruc.2022.133651
  22. 22. Acidi A, Siakhene N, Grine S, Bouasla R, Rizi A, Otmane Rachedi K, et al. In vitro and in silico studies of antifungal activity of Syzygium aromaticum essential oil and its main constituent ‘eugenol’ against a citrus fungal strain, Fusarium proliferatum. Chem Afr. 2025;8(4):1365-76. https://doi.org/10.1007/s42250-025-01225-z
  23. 23. Armaković S, Armaković SJ. Atomistica. online–web application for generating input files for ORCA molecular modelling package made with the Anvil platform. Mol Simul. 2023;49(1):117-23. https://doi.org/10.1080/08927022.2022.2126865
  24. 24. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580-92. https://doi.org/10.1002/jcc.22885
  25. 25. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  26. 26. Padalia RC, Verma RS, Sundaresan V. Volatile terpenoid compositions of leaf and rhizome of Curcuma amada Roxb. from Northern India. J Essent Oil Res. 2013;25(1):17-22. https://doi.org/10.1080/10412905.2012.747271
  27. 27. Kumar S, Yada M, Yadav A, Yadav JP. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm. f. South Afr J Bot. 2017;111:50–59. https://doi.org/10.1016/j.sajb.2017.03.012
  28. 28. Raj G, Baby S, Dan M. Volatile constituents from the rhizomes of Curcuma haritha Mangaly and Sabu from southern India. Flavour Fragr J. 2008;23(5):348-52. https://doi.org/10.1002/ffj.1891
  29. 29. Albaqami JJ, Hamdi H, Narayanankutty A, Visakh NU, Sasidharan A, Kuttithodi AM, et al. Chemical composition and biological activities of the leaf essential oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia. Antibiotics. 2022;11(11):1547. https://doi.org/10.3390/antibiotics11111547
  30. 30. Ray A, Jena S, Dash B, Kar B, Halder T, Chatterjee T, et al. Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind Crops Prod. 2018;112:353-62. https://doi.org/10.1016/j.indcrop.2017.12.033
  31. 31. Sahoo A, Jena S, Ray A, Dash KT, Nayak S, Panda PC. Chemical constituent analysis and antioxidant activity of leaf essential oil of Curcuma xanthorrhiza. J Essent Oil-Bear Plants. 2021;24(4):736-44. http://dx.doi.org/10.1080/0972060X.2021.1955750
  32. 32. Pundir H, Pant M, Joshi T, Bhat S, Pathak R, Bajpai AB, et al. Identification of essential oil phytocompounds as natural inhibitors of odorant-binding protein to prevent malaria through in silico approach. J Biomol Struct Dyn. 2023;41:8323-33. https://doi.org/10.1080/07391102.2022.2132419
  33. 33. Kuzmanic A, Zagrovic B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J. 2010;98:861-71. https://doi.org/10.1016/j.bpj.2009.11.011
  34. 34. MIu L, Bogatyreva NS, Galzitskaia OV. Radius of gyration is indicator of compactness of protein structure. Mol Biol. 2008;42:701-706.
  35. 35. Panigrahi SK. Strong and weak hydrogen bonds in protein-ligand complexes of kinases: A comparative study. Amino Acids. 2008;34:617–33. https://doi.org/10.1007/s00726-007-0015-4
  36. 36. Maurer M, Oostenbrink C. Water in protein hydration and ligand recognition. J Mol Recog. 2019;32(12):e2810. https://doi.org/10.1002/jmr.2810
  37. 37. Schneckener S, Grimbs S, Hey J, Menz S, Osmers M, Schaper S, et al. Prediction of oral bioavailability in rats: Transferring insights from in vitro correlations to (deep) machine learning models using in silico model outputs and chemical structure parameters. J Chem Inf Model. 2019;59:4893-905. https://doi.org/10.1021/acs.jcim.9b00460
  38. 38. Martin YC. A bioavailability score. J Med Chem. 2005;48:3164-70. https://doi.org/10.1021/jm0492002
  39. 39. Belal A. Drug likeness, targets, molecular docking and ADMET studies for some indolizine derivatives. Pharmazie. 2018;73:635-42. https://doi.org/10.1691/ph.2018.8061
  40. 40. Ramírez-Martínez C, Zárate-Hernández LA, Camacho-Mendoza RL, González-Montiel S, Meneses-Viveros A, Cruz-Borbolla J. The use of global and local reactivity descriptors of conceptual DFT to describe toxicity of benzoic acid derivatives. Comput Theor Chem. 2023;1226:114211. https://doi.org/10.1016/j.comptc.2023.114211
  41. 41. Akman F. A density functional theory study based on monolignols: Molecular structure, homo-lumo analysis, molecular electrostatic potential. Cellul Chem Technol. 2019;53(3-4):243-50. http://dx.doi.org/10.35812/CelluloseChemTechnol.2019.53.24
  42. 42. Ngo TC, Dao DQ, Thong NM, Nam PC. Insight into the antioxidant properties of non-phenolic terpenoids contained in essential oils extracted from the buds of Cleistocalyx operculatus: A DFT study. RSC Adv. 2016;6:30824-34. http://dx.doi.org/10.1039/C6RA02683D
  43. 43. Khnifira M, Boumya W, Attarki J, Soufi A, Sadiq MH, Achak M, et al. Interaction between drug molecule and inverse spinel surfaces in aqueous solution: Insights from DFT and DMC simulation. Comput Theor Chem. 2023;1228(9):114289. https://doi.org/10.1016/j.comptc.2023.114289
  44. 44. Grine S, Taibi F, Berredjem M, Dekir A, Benaliouche F, Rachedi KO. Antifungal activity of the essential oil of Pelargonium graveolens. Molecular docking, molecular dynamics, DFT, and in silico ADMET studies of five derivatives. J Mol Struct. 2023;1294:136546. https://doi.org/10.1016/j.molstruc.2023.136546
  45. 45. Prasana JC, Muthu S, Abraham CS. Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: A potential antiviral drug. Comput Biol Chem. 2019;78:9-17. https://doi.org/10.1016/j.compbiolchem.2018.11.014
  46. 46. Lefi N, Kazachenko AS, Raja M, Issaoui N, Kazachenko AS. Molecular structure, spectral analysis, molecular docking and physicochemical studies of 3-bromo-2-hydroxypyridine monomer and dimer as bromodomain inhibitors. Molecules. 2023;28(6):2669. https://doi.org/10.3390/molecules28062669
  47. 47. Demirpolat A, Akman F, Kazachenko AS. An experimental and theoretical study on essential oil of Aethionema sancakense: Characterization, molecular properties and RDG analysis. Molecules. 2022;27(18):6129. https://doi.org/10.3390/molecules27186129

Downloads

Download data is not yet available.