Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Role of nano-nutrients in enhancing the growth-regulating potential of paclobutrazol in guava cultivation under agroclimatic conditions of Punjab, India

DOI
https://doi.org/10.14719/pst.9251
Submitted
2 May 2025
Published
23-09-2025 — Updated on 10-10-2025
Versions

Abstract

Guava (Psidium guajava L.), a tropical fruit of nutritional and economic importance, often faces challenges such as excessive vegetative growth, uneven flowering and inefficient nutrient absorption. The present study, conducted in 2023-2024 at the Department of Fruit Science, School of Agriculture, Lovely Professional University, Phagwara, Punjab, evaluated the combined influence of paclobutrazol (PBZ) and nano-nutrients on growth regulation, physiological response, yield and fruit quality in guava cv. Allahabad Safeda. PBZ at 3.0 mL/L, a growth inhibitor was applied in conjunction with nano-boron (0.05 %) to assess their synergistic effects. The integrated application notably curtailed vegetative growth, as reflected by reduced plant height increment (0.45 cm), canopy volume (0.46 m³) and stem girth (0.35 cm), suggesting a reallocation of assimilates toward reproductive development. Enhanced physiological parameters such as chlorophyll content, fruit firmness (5.81 kg/cm²) and specific gravity (1.17) indicated improved plant efficiency. Significant gains were also recorded in fruit weight (187.54 g), length (6.68 cm), diameter (5.65 cm) and yield (26.05 kg/tree). These results highlight the effectiveness of combining PBZ with nano-nutrients in optimizing vegetative control, enhancing fruit quality and boosting yield. This integrated approach presents a sustainable strategy for improving guava production, particularly under resource-limited and variable
agro-climatic conditions.

References

  1. 1. Pandhi S, Kumar A, Rai DC. Efficacy evaluation of extraction technologies for guava (Psidium guajava L.) leaves extract. Ann Phytomed. 2022;11(1):413–18. https://doi.org/10.54085/ap.2022.11.1.47
  2. 2. Kumar A, Kumar A, Tripathi SK, Kumar D, Gangwar V, Veersain S, et al. Impact of different vegetative propagation techniques in guava (Psidium guajava L.) cv. Dhawal under western U. P. conditions. Biol Forum Int J. 2022;14(3):814–17.
  3. 3. Hussain S, Zameer B, Naseer T, Qadri T, Fatima TA. Guava (Psidium guajava) – Morphology, taxonomy, composition and health benefits. In: Fruits grown in highland regions of the Himalayas: Nutritional and health benefits. Cham: Springer; 2021. p. 257–67. https://doi.org/10.1007/978-3-030-75502-7_20
  4. 4. Kumar S, Baswal AK, Ramezanian A, Gill KS, Mirza AA. Impact of carboxymethyl cellulose-based edible coating on storage life and quality of guava fruit cv. 'Allahabad Safeda' under ambient storage conditions. J Food Meas Charact. 2021;15(5):4805–12. https://doi.org/10.1007/s11694-021-01057-8
  5. 5. Kapoor H, Sharma S, Thakur A, Ravi K. Impact of salicylic acid and ascorbic acid post-harvest dipping on phytochemical compounds of Allahabad Safeda guava fruits. Ann Phytomed. 2024;13(1):1302–308. https://doi.org/10.54085/ap.2024.13.1.142
  6. 6. Jayakumari S, Vijayalakshmi A, Anandhi N, Mounisha B, Sameer MM, Yogeshwaran V. Wound healing and cytotoxic effects of tannin-rich fraction of Psidium guajava L. leaves. Ann Phytomed. 2023;12(2):1–6. https://doi.org/10.54085/ap.2023.12.2.1
  7. 7. Bakshi M, Verma P, Mirza AA, Singh SK, Mehndi S. Impact of foliar spray of nano-Zn and nano-Cu on biochemical characteristics of guava cv. Allahabad Safeda. J Appl Nat Sci. 2024;16(1):239–44.
  8. 8. Rodge RR, Rajan R, Chaudhuri M, Kaur H, Girase L. Influence of growth regulators on canopy management of fruit crops – A review. Biol Forum Int J. 2023;15(4):379–84.
  9. 9. Singh P, Kaur G. Role of pre-harvest application of paclobutrazol and ethephon on fruit quality of winter guava cv. Sardar. J Exp Agric Int. 2018;24(4):1–6. https://doi.org/10.9734/JEAI/2018/41852
  10. 10. Patidar S, Kumar S, Patidar K. Effect of nano zinc and nano iron on the vegetative growth of guava (Psidium guajava L.) cv. Allahabad Safeda. J Exp Agric Int. 2024;46(6):556–69. https://doi.org/10.9734/jeai/2024/v46i62509
  11. 11. Chandrakala V, Aruna A, Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg Mater. 2022;5(6):1593–1615. https://doi.org/10.1007/s42247-021-00335-x
  12. 12. Singh S, Singh A, Dey R, Mahatma M, Reddy K, Singh AK, et al. Insights into the physiological and molecular responses of plants to iron and zinc deficiency. Plant Physiol Rep. 2021;26(4):1–10. https://doi.org/10.1007/s40502-021-00620-1
  13. 13. Jaime-Guerrero M, Álvarez-Herrera JG, Fischer G. Effect of calcium on fruit quality: A review. Agron Colomb. 2024;42:1–14. https://doi.org/10.15446/agron.colomb.v42n1.112026
  14. 14. Pasala R, Kulasekaran R, Pandey BB, Manikanta CH, Gopika K, Daniel PJ, et al. Recent advances in micronutrient foliar spray for enhancing crop productivity and managing abiotic stress tolerance. In: Kumar V, Srivastava AK, Su-prasanna P, editors. Plant nutrition food security and climate change. Cham: Springer; 2022. p. 377. https://doi.org/10.1016/B978-0-12-822916-3.00008-1
  15. 15. Ranjbar S, Rahemi M, Ramezanian A. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious. Sci Hortic. 2018;240:57–64. https://doi.org/10.1016/j.scienta.2018.05.035
  16. 16. Mohamed A, Mohamed H. Response of superior grapevines grown under Minia region conditions to spraying wheat seed sprout extract and nano-boron. Fayoum J Agric Res Dev. 2018;32(2):68–79.
  17. 17. Abdel-Sattar M, Makhasha E, Al-Obeed RS. Conventional and nano-zinc foliar spray strategies to improve the physico-chemical properties and nutritional and antioxidant compounds of timor mango fruits under abiotic stress. Horti-culturae. 2024;10(10):1096. https://doi.org/10.3390/horticulturae10101096
  18. 18. Westwood MN, Raimer FC, Quakenbush. Long term yield related to ultimate tree size of three pear varieties grown on rootstock of five Pyrus spp. Proc Am Soc Hortic Sci. 1983;82(13):103–108.
  19. 19. Dhillon BS, Singh SN, Kundal GS, Minhas PPS. Studies on the development physiology of guava fruit (Psidium guajava L.). II biochemical characters. Punjab Hort J. 1987;27(3–4):213–21.
  20. 20. Abdullah F, Zamzuri MF, Kamaruzaman SS, Uda MNA, Arsat ZA, Muttalib MFA, et al. Growth responses of okra (Abelmoschus esculentus L. Moench) to selected plant growth regulators. Adv Sustain Tech. 2024;3(1):46–53. https://doi.org/10.58915/aset.v3i1.788
  21. 21. Desta B, Amare G. Paclobutrazol as a plant growth regulator. Chem Biol Tech Agric. 2021;8:1–15. https://doi.org/10.1186/s40538-020-00199-z
  22. 22. Zaib M. Boron nutrient for sustainability of plant growth and soil health: A re-view with future prospects. Int J Contemp Issues Soc Sci. 2024;3(1):912–31.
  23. 23. Kohli SK, Kaur H, Khanna K, Handa N, Bhardwaj R, Rinklebe J, et al. Boron in plants: Uptake, deficiency and biological potential. Plant Growth Regul. 2023;100:267–82. https://doi.org/10.1007/s10725-022-00844-7
  24. 24. Li L, Wonder J, Helming T, van Asselt G, Pantazopoulou CK, van de Kaa Y, et al. Evaluation of the roles of brassinosteroid, gibberellin and auxin for tomato internode elongation in response to low red:far‐red light. Physiol Plant. 2024;176:e14558. https://doi.org/10.1111/ppl.14558
  25. 25. Sharma A. Effect of PGRs application on ‘mrig-bahar’ of guava under sub-Himalayan subtropical growing conditions [Doctoral dissertation]. College of Horticulture and Forestry, Dr YSP University of Horticulture and Forestry, Nauni, Solan (HP); 2024.
  26. 26. Mor R, Rana GS, Kumar S, Kumari S, Jat ML. Influence of foliar application of boron, iron and magnesium on quality attributes and leaf nutrient status of guava cv. Hisar Surkha. J Plant Nutr. 2024;47(3):423–32. https://doi.org/10.1080/01904167.2023.2278658
  27. 27. Setiawan E, Budiarto R, Hamdani JS, Ghorbanpour M. An overview of gibberellin inhibitors for regulating vegetable growth and development. Kultivasi. 2024;23:375–85. https://doi.org/10.24198/kultivasi.v23i3.58797
  28. 28. Maheshwari C, Garg NK, Hasan M, Prathap V, Meena NL, Singh A, et al. In-sight of PBZ mediated drought amelioration in crop plants. Front Plant Sci. 2022;13:1008993. https://doi.org/10.3389/fpls.2022.1008993
  29. 29. Sharma M, Gupta I, Tisarum R, Batish DR, Chaum S, Singh HP. Paclobutrazol improves the chlorophyll content and antioxidant activities of red rice in response to alkaline stress. J Soil Sci Plant Nutr. 2023;23(4):6429–44. https://doi.org/10.1007/s42729-023-01497-9
  30. 30. Franco-Lagos CL, Sanchez E, Palacio-Marquez A, Perez-Alvarez S, Terrazas-Gomez M, Villalobos-Cano O, et al. Efficacy of the application of boron nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans. Notul Bot Hort Agrobot Cluj-Napoca. 2023;51(1):12795. https://doi.org/10.15835/nbha51112795
  31. 31. Dutta SK. Plant growth regulators in guava. In: Ghosh SN, Tarai RK, Ahlawat TR, editors. Plant growth regulators in tropical and sub-tropical fruit crops. CRC Press; 2022. p. 250–61. https://doi.org/10.1201/9781003300342
  32. 32. Madhekar R, Kakpure MR, Dasgupta S, Lokhande KS. Plant science: From fundamentals to advanced research. Aust Plant Pathol. 2024;40:522–28.
  33. 33. Wang J, Wei J, Guo D, Lv X, Wang B, Wang Y, et al. Boron homeostasis affects longan yield: A study of NIP and BOR boron transporter of two cultivars. BMC Plant Biol. 2024;24:9. https://doi.org/10.1186/s12870-023-04689-8
  34. 34. Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2:296–336. https://doi.org/10.3390/agrochemicals2020019
  35. 35. Zhao J, Lai H, Bi C, Zhao M, Liu Y, Li X, Yang D. Effects of paclobutrazol application on plant architecture, lodging resistance, photosynthetic characteristics, and peanut yield at different single-seed precise sowing densities. Crop J. 2023;11(1):301–10. https://doi.org/10.1016/j.cj.2022.05.012
  36. 36. Hapuarachchi NS, Kämper W, Wallace HM, Hosseini Bai S, Ogbourne SM, Nichols J, et al. Boron effects on fruit set, yield, quality and paternity of Hass avocado. Agronomy. 2022;12(6):1479. https://doi.org/10.3390/agronomy12061479
  37. 37. Orozco-Meléndez LR, Hernández-Rodríguez OA, Cruz-Álvarez O, Robles-Hernández L, Ávila-Quezada GD, Chávez ES, et al. Paclobutrazol and its use in fruit production: A review. Phyton Int J Exp Bot. 2022;91(1):1–12. https://doi.org/10.32604/phyton.2022.016908
  38. 38. Mutmain AR, Sakimin SZ, Mohammad AM, Haque A. Paclobutrazol influences vegetative and reproductive growth, physiology and quality of water-melon hybrids. Ann Biol. 2023;39(2):411–18.
  39. 39. Thakur S, Sinha A, Ghosh Bag A. Boron – A critical element for fruit nutrition. Commun Soil Sci Plant Anal. 2023;54:2899–2914. https://doi.org/10.1080/00103624.2023.2252878
  40. 40. Nieves MC, Protacio CM, Edaño MLS, Ocampo ETM, Laurena AC. Effect of paclobutrazol application on the phenological patterns of flowering, fruit pro-duction and Cherelle wilt incidence in cacao (Theobroma cacao L.). Philipp J Crop Sci. 2024;49(3):25–33. https://doi.org/10.63568/vol49iss3pp25-33
  41. 41. Saiin SS, Razak SA, Rashid MA, Hassan MHM, Sabdin ZHM. Effect of girdling and paclobutrazol on growth, plant physiology, inflorescence and fruiting of Mangifera indica cv. Harumanis in agroclimatic-zone 3 of peninsular Malaysia. Asian J Res Crop Sci. 2023;8:26–38. https://doi.org/10.9734/AJRCS/2023/v8i2162
  42. 42. Yu JQ, Ji FY, Yang XK, Cheng Y, Gao HS, Sheng LX. A genome-wide investigation of the mechanism underlying the effect of exogenous boron application on sugar content and overall quality of “Benihoppe” strawberries. Plant Physiol Biochem. 2024;216:109116. https://doi.org/10.1016/j.plaphy.2024.109116
  43. 43. Kumar A. Effect of paclobutrazole (PBZ) on fruit production: A review. Int Res J Plant Sci. 2023;14(2):1–20. https://doi.org/10.14303/irjps.2023.11
  44. 44. Álvarez-Herrera JG, Fischer G, Jaime-Guerrero M. Preharvest calcium and irrigation regime affects postharvest quality of cape gooseberry fruit (Physalis peruviana L.). J Appl Bot Food Qual. 2024;97(1):15–21. https://doi.org/10.5073/JABFQ.2024.097.002
  45. 45. Ichsan CN, Salsabila YA, Mayani N, Kurniawan T, Santi IV. Application of soil amendments and paclobutrazol to shorten internode and increase rice yields. IOP Conf Ser Earth Environ Sci. 2024;1297:012016. https://doi.org/10.1088/1755-1315/1297/1/012016
  46. 46. Elsayed GI, Hamed LM, Elsayed ERM, Magdy SR, Nader HR. Fostering sustainable potato production: Enhancing quality & yield via potassium & boron applications. Cienc Investig Agrar. 2024;51:189–203. https://doi.org/10.7764/ijanr.v51i3.2581

Downloads

Download data is not yet available.