Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Analysis of genetic variability and trait association in rice (Oryza sativa L.)

DOI
https://doi.org/10.14719/pst.9309
Submitted
5 May 2025
Published
11-09-2025 — Updated on 06-10-2025
Versions

Abstract

Rice is a staple food for billions of people worldwide. In recent years unpredictable weather patterns, making rice cultivation more challenging and threatens its productivity. To ensure food security, developing high-yielding and climate-resilient rice varieties is essential. This requires a deep understanding of genetic variability and the relationships between key agronomic traits. Thus, the present study explores the genetic variability, as well as the major yield attributes of a segregating population derived from black rice genotypes, to formulate an effective selection strategy. In this research, 188 F2 plants derived from crosses between the improved Chakhao Amubi and improved Co 51 varieties were analysed and superior progenies were forwarded to F3 generation. The variability study in the F₂ population revealed substantial variation for single plant yield and related yield attributes such as productive tillers and panicle length. High heritability estimates across all traits, along with a significant genetic advance over the mean for yield and major yield components, indicate that phenotypic selection would be effective. Principal Component Analysis (PCA) further confirmed the extensive variability present in the F₂ population. Correlation and path analysis highlighted panicle length and flag leaf length as key contributors to single plant yield, emphasizing their importance in selection strategies. The combined analysis of the F₂ and selected F₃ families revealed that single plant yield is predominantly governed by additive gene action, as evidenced by significant inter-generational correlation and high narrow-sense heritability. Furthermore, the observed positive selection response for yield suggests that simple phenotypic selection can lead to substantial genetic gain in rice

References

  1. 1. Hou Z, Qin P, Zhang Y, Cui S, Ren G, et al. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res Int. 2013;50(2):691–7. https://doi.org/10.1016/j.foodres.2011.07.037
  2. 2. Thomas R, Wan-Nadiah WA, Bhat R, et al. Physiochemical properties, proximate composition and cooking qualities of locally grown and imported rice varieties marketed in Penang, Malaysia. Int Food Res J. 2013;20(3). https://doi.org/10.3136/fstr.20.469
  3. 3. Jha P, Das AJ, Deka SC, et al. Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk. J Food Sci Technol. 2017;54:3847–58. https://doi.org/10.1007/s13197-017-2832-0
  4. 4. Poonia A, Pandey S, et al. Bioactive compounds, nutritional benefits and food applications of black rice: a review. Nutr Food Sci. 2021;52(3):466–82.
  5. 5. Espe MB. Yield gaps and opportunities: exploring the current state of grain yield in US rice production systems. Univ Calif Davis. 2017. http://dx.doi.org/10.1016/j.fcr.2016.07.011
  6. 6. Tayade RR, Nguyen TTD. Effective strategies for enhancing tolerance to high-temperature stress in rice during the reproductive and ripening stages. 2018. https://doi.org/10.9787/PBB.2018.6.1.1
  7. 7. Yuan S, Stuart AM, Laborte AG, Rattalino Edreira JI, Dobermann A, Kien LV, et al. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat Food. 2022;3(3):217-26. https://doi.org/10.1038/s43016-022-00477-z
  8. 8. Messina C, Hammer G, Dong Z, Podlich D, Cooper M, et al. Modelling crop improvement in a G×E×M framework via gene-trait-phenotype relationships. In: Sadras VO, Calderini DF, editors. Crop Physiology: Applications for Genetic Improvement and Agronomy. Elsevier; 2009:235-65. http://dx.doi.org/10.1016/B978-0-12-374431-9.00010-4
  9. 9. Roy S, Verma BC, Banerjee A, Kumar J, Ray US, Mandal NP, et al. Genetic diversity for drought and low-phosphorus tolerance in rice (Oryza sativa L.) varieties and donors adapted to rainfed drought-prone ecologies. Sci Rep. 2021;11(1):13671. https://doi.org/10.1038/s41598-021-93325-2
  10. 10. Rana MM. Conservation agriculture for sustainable crop productivity and economic return for the smallholders of Bangladesh: a systematic review. Turk J Agric Food Sci Technol. 2023;11(10):2009–15. https://doi.org/10.24925/turjaf.v11i10.2009-2015.6053
  11. 11. Moosavi M, Ranjbar G, Zarrini HN, Gilani A. Correlation between morphological and physiological traits and path analysis of grain yield in rice genotypes under Khuzestan conditions. Biol Forum. 2015;7(1):43.
  12. 12. Mahendran R, Veerabadhiran P, Robin S, Raveendran M. Principal component analysis of rice germplasm accessions under high temperature stress. 2015.
  13. 13. Maji AT, Shaibu AA. Application of principal component analysis for rice germplasm characterization and evaluation. J Plant Breed Crop Sci. 2012;4(6):87–93. http://dx.doi.org/10.5897/JPBCS11.093
  14. 14. Shoba D, Vijayan R, Robin S, Manivannan N, Iyanar K, Arunachalam P, et al. Assessment of genetic diversity in aromatic rice (Oryza sativa L.) germplasm using PCA and cluster analysis. Electron J Plant Breed. 2019;10(3):1095-104. http://dx.doi.org/10.5958/0975-928X.2019.00140.6
  15. 15. Gewers FL, Ferreira GR, Arruda HF, Silva FN, Comin CH, Amancio DR, et al. Principal component analysis: a natural approach to data exploration. ACM Comput Surv. 2021;54(4):1-34. https://doi.org/10.48550/arXiv.1804.02502
  16. 16. Singh V, Zhou S, Ganie Z, Valverde B, Avila L, Marchesan E, et al. Rice production in the Americas. In: Chauhan BS, Jabran K, Mahajan G, editors. Rice Production Worldwide. Cham: Springer; 2017:137-68. https://doi.org/10.1007/978-3-319-47516-5_6
  17. 17. Singh RK, Chaudhary BD. Biometrical methods in quantitative genetic analysis. New Delhi: Kalyani Publishers; 1981.
  18. 18. Cheabu S, Pansrithong M, Malumpong C, Thongjoo C, Romkaew J. Variability and relationship between agronomic traits and grain yield in rice (Oryza sativa L.) under heat stress conditions. Int J Agric Technol. 2024;20:1823-42.
  19. 19. Kumar N, Chhokar RS, Meena RP, Kharub AS, Gill SC, Tripathi SC, et al. Challenges and opportunities in productivity and sustainability of rice cultivation system: a critical review in Indian perspective. Cereal Res Commun. 2021:1-29. https://doi.org/10.1007/s42976-021-00214-5
  20. 20. Wang P, Zhou G, Yu H, Yu S, Mahendran R, Veerabadhiran P, Robin S, Raveendran M. Principal component analysis of rice germplasm accessions under high temperature stress.
  21. 21. Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet. 2011;123:1319–30. https://doi.org/10.1007/s00122-011-1669-6
  22. 22. Liu C, Wu C, Yuan Z, Tian B, Yu P, Xu D, et al. Multi-trait genome-wide association studies reveal novel pleiotropic loci associated with yield and yield-related traits in rice. J Integr Agric. 2024. https://doi.org/10.1016/j.jia.2024.07.026
  23. 23. Anilkumar C, Sah RP, Muhammed Azharudheen TP, Behera S, Mohanty SP, Anandan A, et al. Integrating multi-trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice. Ann Appl Biol. 2025;186(2):216–27. http://dx.doi.org/10.1111/aab.12964
  24. 24. Habib MA, Azam MG, Haque MA, Hassan L, Khatun MS, Nayak S, et al. Climate-smart rice (Oryza sativa L.) genotypes identification using stability analysis, multi-trait selection index and genotype-environment interaction at different irrigation regimes with adaptation to universal warming. Sci Rep. 2024;14(1):13836. https://doi.org/10.1038/s41598-024-64808-9
  25. 25. Panigrahi AK, Bharathi M, Kumaravadivel N. Morphological characterization of advanced backcross population for yield and yield attributing character in rice (Oryza sativa L.). Int J Curr Microbiol Appl Sci. 2018;7(2):2812–9. https://doi.org/10.20546/ijcmas.2018.702.342
  26. 26. Sudharani M, Reddy PR, Reddy GH, Raju CS. Correlation and path coefficient analysis for yield and physiological attributes in rice (Oryza sativa L.) hybrids under saline soil conditions. 2013.
  27. 27. Zeng L, Kwon TR, Liu X, Wilson C, Grieve CM, Gregorio GB. Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L.) genotypes with different adaptations to saline soils. Plant Sci. 2004;166(5):1275–85. http://dx.doi.org/10.1016/j.plantsci.2004.01.005
  28. 28. Immanuel SC, Pothiraj N, Thiyagarajan K, Bharathi M, Rabindran R. Genetic parameters of variability, correlation and path coefficient studies for grain yield and other yield attributes among rice blast disease resistant genotypes of rice (Oryza sativa L.). Afr J Biotechnol. 2011;10(17):3322–34. http://dx.doi.org/10.5897/AJB10.2575
  29. 29. Rajamadhan R, Murugan E. Genetic variability, correlation and path coefficient studies for grain yield and other yield attributing traits in rice (Oryza sativa L.). Adv Life Sci. 2016;5(6):2145–50.
  30. 30. Ramya B, Saravanan K, Kumar PS. Genetic parameters of variability, correlation and path coefficient studies for grain yield and other yield attributes traits in rice (Oryza sativa L.). Plant Arch. 2012;12(2):711–5.
  31. 31. Seyoum M, Alamerew S, Bantte K. Genetic variability, heritability, correlation coefficient and path analysis for yield and yield related traits in upland rice (Oryza sativa L.). J Plant Sci. 2012;7(1):13–22. http://dx.doi.org/10.3923/jps.2012.13.22
  32. 32. Jambhulkar NN, Bose LK. Genetic variability and association of yield attributing traits with grain yield in upland rice. Genetika. 2014;46(3):831–8. http://dx.doi.org/10.2298/GENSR1403831J
  33. 33. Sudeepthi K, Srinivas TV, Kumar BR, Jyothula DP, Umar SN. Assessment of genetic variability, character association and path analysis for yield and yield component traits in rice (Oryza sativa L.). Electron J Plant Breed. 2020;11(1):144–8. https://doi.org/10.37992/2020.1101.026
  34. 34. Abhilash R, Thiruvengadam T, Dhatchinamoorthy S. Genetic studies in F2 for biometrical traits in rice (Oryza sativa L.). Electron J Plant Breed. 2018;9(3):1067–76. https://doi.org/10.5958/0975-928X.2018.00133.3
  35. 35. Karim MJ, Jesmin F, Ali MH, Islam MN, Mahmud E. Variability, heritability and genetic advances for quantitative characters in T. Aman rice. Int J Biol Res. 2016;1(2):1–5.
  36. 36. Mahalakshmi PJ, Satish Y, Ramana JV, Raju MR. Correlation and path coefficient analysis for yield and its component traits in advanced breeding lines of rice (Oryza sativa L.). J Adv Biol Biotechnol. 2024;27(9):769–77. http://dx.doi.org/10.9734/jabb/2024/v27i91350
  37. 37. Hossain S, Haque M, Rahman J. Genetic variability, correlation and path coefficient analysis of morphological traits in some extinct local Aman rice (Oryza sativa L.). J Rice Res. 2015;3(158):2. https://doi.org/10.4172/2375-4338.1000158
  38. 38. Sharma N, Murty NS, Mall P, Bhardwaj SB. An analysis on the yield and yield contributing characters of rice in tarai region of Uttarakhand. Int J Chem Stud. 2018;6(3):42–7.
  39. 39. Sharif S, Javaid RA, Majeed A, Ahmed MS, Sani QU, Siddique F, et al. Genetic diversity estimation of rice genotypes based on morphological and quality parameters through principal component analysis. Pak J Agric Res. 2023;36(3):207–16. https://dx.doi.org/10.17582/journal.pjar/2023/36.3.207.216
  40. 40. Khatun M, Islam MR, Khan MA, Hossain MK, Islam AK. Principal component analysis and estimated breeding values for selecting suitable parental genotypes in rice (Oryza sativa L.). SABRAO J Breed Genet. 2023;55(6):1886–96. http://doi.org/10.54910/sabrao2023.55.6.3
  41. 41. Reddy VR, Rani TS, Kumari A, Soundharya B. Correlation and path analysis for yield and yield attributes in maintainer lines of rice (Oryza sativa L.). Int J Bioresour Stress Manag. 2023;14(6):900–8. https://doi.org/10.23910/1.2023.3417
  42. 42. Sanku G, Hepziba SJ, Sheeba A, Hemalatha G, Senthil K. Genetic variability and relatedness among yield characters in rice landraces and improved varieties. Electron J Plant Breed. 2022;13(3):932–9. http://doi.org/10.37992/2022.1303.122
  43. 43. SaiVenkat KS, Sekhar MR, Vemireddy LR, Umar SN, Bommisetty R. Multivariate analyses of rice indigenous germplasm for identification of high yield potential genotypes based on yield and its attributes. Genet Resour Crop Evol. 2024;71(8):4807–23. http://dx.doi.org/10.1007/s10722-024-01932-5
  44. 44. Muthuramu S, Ragavan T. Association analysis for yield traits in rainfed rice (Oryza sativa L.). Int J Curr Microbiol Appl Sci. 2020;9(4):1512–7. https://doi.org/10.20546/ijcmas.2020.904.178
  45. 45. Savitha P, Kumari RU. Genetic variability studies in segregating generation for grain and nutritional quality traits in rice (Oryza sativa L.). J Appl Nat Sci. 2016;8(1):63. https://doi.org/10.31018/jans.v8i1.748
  46. 46. Sabar M, Mustafa SE, Ijaz M, Khan RA, Shahzadi F, Saher H, et al. Rice breeding for yield improvement through traditional and modern genetic tools. Eur J Ecol Biol Agric. 2024;1(1):14–19. https://doi.org/10.59324/ejeba.2024.1(1).02
  47. 47. Gour L, Maurya SB, Koutu GK, Singh SK, Shukla SS, Mishra DK. Characterization of rice (Oryza sativa L.) genotypes using principal component analysis including scree plot & rotated component matrix. Int J Chem Stud. 2017;5(4):975–83.
  48. 48. Abebe T, Alamerew S, Tulu L. Genetic variability, heritability and genetic advance for yield and its related traits in rainfed lowland rice (Oryza sativa L.) genotypes at Fogera and Pawe, Ethiopia. Adv Crop Sci Technol. 2017;5(2):272. https://doi.org/10.4172/2329-8863.1000272
  49. 49. Nadim MK, Rahman M, Sikder MR, Adhikary S, Atiq NB, Alam MM, et al. Performance, adaptability and multi‐trait stability of rice varieties (Oryza sativa L.) in rainfed conditions. Agrosyst Geosci Environ. 2025;8(1):e70038. http://dx.doi.org/10.1002/agg2.70038
  50. 50. Bhangar NA, Arain F, Pandrani MI, Khan N, Soomro G, Rao F, et al. Correlation and heritability estimation for agronomic traits in rice (Oryza sativa L.) genotypes. Kashmir J Sci. 2024;3(3). https://doi.org/10.63147/krjs.v3i3.79
  51. 51. Sandhu N, Yadav S, Kumar Singh V, Kumar A. Effective crop management and modern breeding strategies to ensure higher crop productivity under direct seeded rice cultivation system: a review. Agronomy. 2021;11(7):1264. https://doi.org/10.3390/agronomy11071264
  52. 52. Xu Y, Wang X, Ding X, Zheng X, Yang Z, Xu C, et al. Genomic selection of agronomic traits in hybrid rice using an NCII population. Rice. 2018;11:1–0. https://doi.org/10.1186/s12284-018-0223-4
  53. 53. Christina GR, Thirumurugan T, Jeyaprakash P, Rajanbabu V. Principal component analysis of yield and yield related traits in rice (Oryza sativa L.) landraces. Electron J Plant Breed. 2021;12(3):907–11. https://doi.org/10.37992/2021.1203.125
  54. 54. Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GE, Schroeder JI. Genetic strategies for improving crop yields. Nature. 2019;575(7781):109–18. https://doi.org/10.1038/s41586-019-1679-0

Downloads

Download data is not yet available.