Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Effects of salinity on growth traits, physiological parameters and chlorophyll in vegetative phase of Indonesian local rice (Oryza sativa L.) varieties

DOI
https://doi.org/10.14719/pst.9311
Submitted
5 May 2025
Published
27-11-2025

Abstract

Rice (Oryza sativa L.) is one of the most important staple food crops for most of the world's population. However, rapid population growth and the conversion of agricultural land to other uses have increased the demand for higher rice production. One approach to increase rice yields is to expand the planting area on high salinity land using rice varieties with enhanced tolerance under salinity stress. This study aims to test the level of resistance of several rice varieties during the vegetative phase under salinity stress. The rice varieties tested in this study include Pamelen, Inpago 10, Gilirang and Inpari 30. The steps of this study include preparation and sowing of rice seeds, making planting media, planting hydroponically and treating salinity stress, harvesting, observing and measuring treatment results. A factorial randomized block design (RBD) was used, with two factors: variety and salinity level (0, 100 and 200 mM NaCl), with three replications. The results obtained from this study were that the administration of salinity stress caused the four rice varieties to experience morphological, physiological and chlorophyll pigment disorders. Based on the results of research and statistical analysis conducted, the Inpari 30 variety shows the highest tolerance (p < 0.05) across most traits.

References

  1. 1. Liu C, Mao B, Yuan D, Chu C, Duan M. Salt tolerance in rice: physiological responses and molecular mechanisms. The Crop Journal. 2022;10:13-25. https://doi.org/10.1016/j.cj.2021.02.010
  2. 2. Badan Pusat Statistik. Luas panen dan produksi padi di Indonesia 2022. Jakarta: Badan Pusat Statistik; 2023.
  3. 3. Muttaqien MI, Rahmawati D. Karakter kualitatif dan kuantitatif beberapa varietas padi (Oryza sativa L.) terhadap cekaman salinitas (NaCl). Journal of Applied Agricultural Sciences. 2019;3(1):42-53. https://doi.org/10.25047/agriprima.v3i1.94
  4. 4. Asifah R, Izzati M, Prihastanti E. Kombinasi Azolla pinnata R. Br. dan abu sekam terhadap pertumbuhan dan produksi tanaman padi (Oryza sativa L. var Inpari 33) di lahan salin. Buletin Anatomi dan Fisiologi. 2019;4(1):73-81. https://doi.org/10.14710/baf.4.1.2019.73-81
  5. 5. Reinhardt J, Hilgert P, Cosse MV. Yield performance of dedicated industrial crops on low-temperature characterized marginal agricultural land in Europe – a review. Biofuels, Bioproducts and Biorefining. 2022;16:609-22. https://doi.org/10.1002/bbb.2314
  6. 6. Keiky YR. Instrumen kebijakan perlindungan lahan pertanian pangan berkelanjutan di Kabupaten Bojonegoro. Kebijakan dan Manajemen Publik. 2016;4(2):116-25.
  7. 7. Mustakim, Samudin S, Adelina E, Ete A, Yusran. Uji ketahanan salinitas beberapa kultivar padi gogo dengan menggunakan berbagai konsentrasi NaCl pada fase perkecambahan. J Agrotekbis. 2020;8(1):160-6.
  8. 8. Jayani FM, Juniarto A. Pengaruh pemberian dosis kompos dan arang bambu terhadap pertumbuhan Neolamarckia cadamba (Roxb.) Bosser pada lahan marjinal. Wahana Forestra: Jurnal Kehutanan. 2020;15(2):40-52. https://doi.org/10.31849/forestra.v15i2.4718
  9. 9. Kusmiyati F, Sumarsono, Karno. Pengaruh perbaikan tanah salin terhadap karakter fisiologis Calopogonium mucunoides. Pastura. 2014;4(1):1-6.
  10. 10. Yullianida, Suwarno, Ardie SW, Aswidinnoor H. Uji cepat toleransi tanaman padi terhadap cekaman rendaman pada fase vegetatif. J Agron Indonesia. 2014;42(2):89-95.
  11. 11. Jones JB. Growing plants hydroponically. Boca Raton: CRC Press; 2014.
  12. 12. Purwaningrahayu RD, Taufiq A. Respon morfologi empat genotip kedelai terhadap cekaman salinitas. Jurnal Biologi Indonesia. 2017;13(2):175-88. https://doi.org/10.47349/jbi/13022017/175
  13. 13. Negrao N, Schmockel SM, Tester M. Evaluating physiological responses of plants to salinity stress. Annals of Botany. 2017;119:1-11. https://doi.org/10.1093/aob/mcw191
  14. 14. Karolinoerita V, Yusuf WA. Salinisasi lahan dan permasalahannya di Indonesia. Jurnal Sumberdaya Lahan. 2020;14(2):91-9. https://doi.org/10.21082/jsdl.v14n2.2020.91-99
  15. 15. Tolib R, Kusmiyati F, Lukiwati DR. Pengaruh sistem tanam dan pupuk organik terhadap karakter agronomi turi dan rumput benggala pada tanah salin. J Agro Complex. 2017;1(2):57-64. https://doi.org/10.14710/joac.1.2.57-6
  16. 16. Maryum Z, Luqman T, Nadeem S, Khan SMUD, Wang B, Ditta A, et al. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science. 2022;13(907937):1-22. https://doi.org/10.3389/fpls.2022.907937
  17. 17. Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, et al. Effects of salinity stress on chloroplast structure and function. Cells. 2021;10(2023):1-22. https://doi.org/10.3390/cells10082023
  18. 18. Ondrasek G, Rathod S, Manohara KK, Gireesh C, Anantha MS, Sakhare AS, et al. Salt stress in plants and mitigation approaches. Plants. 2022;11(717):1-21. https://doi.org/10.3390/plants11060717
  19. 19. Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, Sarwar G, et al. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiology and Molecular Biology of Plants. 2019;25(4):807-20. https://doi.org/10.1007/s12298-019-00676-2
  20. 20. Hand MJ, Taffouo VD, Nouck AE, Nyemene KPJ, Tonfack LB, Meguekam TL, et al. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2017;45(2):481-90. https://doi.org/10.15835/nbha45210928
  21. 21. Chutimanukul P, Saputro TB, Mahaprom P, Plaimas K, Comai L, Buaboocha T, et al. Combining genome and gene co-expression network analyses for the identification of genes potentially regulating salt tolerance in rice. Front Plant Sci. 2021;12:704549. https://doi.org/10.3389/fpls.2021.704549
  22. 22. Punchkhon C, Chutimanukul P, Chokwiwatkul R, Saputro TB, Grennan AK, Diego ND, et al. Role of LOC_Os01g68450, containing DUF2358, in salt tolerance is mediated via adaptation of absorbed light energy dissipation. Plants. 2022;11:1233. https://doi.org/10.3390/plants11091233
  23. 23. Saputro TB, Jakada BH, Chutimanukul P, Comai L, Buaboocha T, Chadchawan S. OsBTBZ1 confers salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci. 2023;24:14483. https://doi.org/10.3390/ijms241914483
  24. 24. Jakada BH, Punchkhon C, Syarifudin A, Saputro TB, Buaboocha T, Chadchawan S. Rice OBF binding protein 4 (OsOBP4) participates in flowering and regulates salt stress tolerance in Arabidopsis. Environ Exp Bot. 2024;221:105748. https://doi.org/10.1016/j.envexpbot.2024.105748
  25. 25. Lesmana OS, Toha HM, Las I. Deskripsi varietas unggul baru padi. Badan Penelitian dan Pengembangan Pertanian Balai Penelitian Tanaman Padi; 2002.
  26. 26. Thamrin M, Suprihanto, Hasmi I, Ardhiyanti SD, Suhartini, Nugroho N, et al. Deskripsi varietas unggul baru padi. Balai Besar Pengujian Standar Instrumen Padi, Badan Standarisasi Instrumen Pertanian, Kementerian Pertanian; 2023.
  27. 27. Syahputra BSA. Potensi tanah salin sebagai pengembangan lahan tanaman padi (Oryza sativa L.). Agriland J Ilmu Pertanian. 2021;9(3):129-34.
  28. 28. Welburn AR. The spectral determination of chlorophylls a and b, as well as carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144:307-13. https://doi.org/10.1016/S0176-1617(11)81192-2
  29. 29. Hniličková H, Hnilička F, Orsák M, Hejnák V. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ. 2019;65(2):90-6. https://doi.org/10.17221/620/2018-PSE
  30. 30. Camlica M, Yaldiz G. Effect of salt stress on seed germination, shoot and root length in basil (Ocimum basilicum). Int J Secondary Metabolite. 2017;4(3):69-76. https://doi.org/10.21448/ijsm.356250
  31. 31. Du X, Du Y, Feng N, Zheng D, Zhou H, Huo J. Exogenous uniconazole promotes physiological metabolism and grain yield of rice under salt stress. Front Plant Sci. 2024;15:1459121. https://doi.org/10.3389/fpls.2024.1459121
  32. 32. Sonone M, Mane A, Sawardekar S, Kunkerkar R. Consequences of salt stress on chlorophyll pigments of rice genotypes. The Pharma Innovation Journal. 2023;12(6):3272-5.
  33. 33. Nasrudin, Fahmi P. Analisis pertumbuhan tanaman padi tercekam salinitas dengan penambahan bahan organik pada media tanam dan perbedaan umur bibit. Jurnal Agro Wiralodra. 2022;5(2):54-60. https://doi.org/10.31943/agrowiralodra.v5i2.76
  34. 34. Meguekam TL, Moualeu DP, Taffouo VD, Stützel H. Changes in plant growth, leaf relative water content and physiological traits in response to salt stress in peanut (Arachis hypogaea L.) varieties. Not Bot Horti Agrobo Cluj-Napoca. 2021;49(1):12049. https://doi.org/10.15835/nbha49112049
  35. 35. Alavan A, Hayati R, Hayati E. Pengaruh pemupukan terhadap pertumbuhan beberapa varietas padi gogo (Oryza sativa L.). J Floratek. 2015;10:61-8.
  36. 36. Irsyad AN, Rachmawati D. Pengaruh pemberian kalsium silikat terhadap pertumbuhan dan struktur anatomi akar tanaman padi (Oryza sativa L. ‘IR64’) pada kondisi cekaman salinitas. Vegetalika. 2022;11(2):108-21. https://doi.org/10.22146/veg.66507
  37. 37. Seleiman MF, Aslam MT, Alhammad BA, Hassan MU, Maqbool R, Chattha MU, et al. Salinity stress in wheat: effects, mechanisms and management strategies. Phyton Int J Exp Bot. 2022;91(4):667-94. https://doi.org/10.32604/phyton.2022.017365
  38. 38. Nasrudin, Wahyudhi A, Gian A. Karakteristik pertumbuhan dan hasil dua varietas padi tercekam garam NaCl. Jurnal Agrotek Tropika. 2022;10(1):111-6. https://doi.org/10.23960/jat.v10i1.5193
  39. 39. Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AMH, Raza A, Fatima EM, et al. Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy. 2021;11(1193):1-16. https://doi.org/10.3390/agronomy11061193
  40. 40. Puvanitha S, Mahendran S. Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars J Agric Vet Sci. 2017;4(4):126-31.
  41. 41. Karimi R, Ghabooli M, Rahimi J, Amerian M. Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. J Plant Nutr. 2020;43(14):2226-42. https://doi.org/10.1080/01904167.2020.1766072
  42. 42. Junandi, Mukarlina, Linda R. Pengaruh cekaman salinitas garam NaCl terhadap pertumbuhan kacang tunggak (Vigna unguiculata L. Walp) pada tanah gambut. Jurnal Protobiont. 2019;8(3):101-5. https://doi.org/10.26418/protobiont.v8i3.36869
  43. 43. Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants’ response mechanisms to salinity stress. Plants. 2023;12(2253):1-22. https://doi.org/10.3390/plants12122253
  44. 44. Anugrah DE, Setiawan TP, Sasmita R, Aulia E, Aminingsih R, Sari VN, et al. Penggunaan indikator fisiologis untuk menentukan tingkat cekaman salinitas pada tanaman padi (Oryza sativa L.). Jurnal Agroqua. 2022;20(1):50-65. https://doi.org/10.32663/ja.v20i1.2424
  45. 45. Tanveer K, Gilani S, Hussain Z, Ishaq R, Adeel M, Ilyas N. Effect of salt stress on tomato plant and the role of calcium. J Plant Nutr. 2019;43(1):28-35. https://doi.org/10.1080/01904167.2019.1659324
  46. 46. Mahlooji M, Sharifi RS, Razmjoo J, Sabzalian MR, Sedghi M. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica. 2018;56(2):549-56. https://doi.org/10.1007/s11099-017-0699-y
  47. 47. Abdelaal KA, El-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, et al. Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating physio-biochemical activities and antioxidant systems. Agronomy. 2020;10(26):1-15. https://doi.org/10.3390/agronomy10010026
  48. 48. Hatami E, Shokouhian AA, Ghanbari AR, Naseri LA. Alleviating salt stress in almond rootstocks using humic acid. Sci Hortic. 2018;237:296-302. https://doi.org/10.1016/j.scienta.2018.03.034
  49. 49. Parkash V, Singh S. Potential of biochar application to mitigate salinity stress in eggplant. HortScience. 2020;55(12):1946-55. https://doi.org/10.21273/HORTSCI15398-20
  50. 50. Zhang P, Senge M, Dai Y. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev Agric Sci. 2016;4:46-55. https://doi.org/10.7831/ras.4.46
  51. 51. Vázquez-Glaría A, Eichler-Löbermann B, Loiret FG, Ortega E, Kavka M. Root-system architectures of two Cuban rice cultivars with salt stress at early development stages. Plants. 2021;10:1194. https://doi.org/10.3390/plants10061194
  52. 52. Hussain S, Hua ZJ, Chu Z, Feng ZL, Chuang CX, Miao YS, et al. Effects of salt stress on rice growth, development characteristics and the regulating ways: a review. J Integr Agric. 2017;16(11):2357-74. https://doi.org/10.1016/S2095-3119(16)61608-8
  53. 53. Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, et al. Salinity stress in potato: understanding physiological, biochemical and molecular responses. Life. 2021;11(545):1-24. https://doi.org/10.3390/life11060545
  54. 54. Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot. 2016;105:306-12. https://doi.org/10.1016/j.sajb.2016.03.011
  55. 55. Akhter MS, Noreen S, Mahmood S, Athar H, Ashraf M, Alsahli AA, et al. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. J King Saud Univ Sci. 2021;33(101239):1-11. https://doi.org/10.1016/j.jksus.2020.101239
  56. 56. Fordoei AR, Bidgholi RD. Impact of salinity stress on photochemical efficiency of photosystem II, chlorophyll content and nutrient elements of nitre bush (Nitraria schoberi L.) plants. J Rangeland Sci. 2016;6(1):1-9.

Downloads

Download data is not yet available.