Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Intron hairpin RNA derived from the HC-Pro gene confers resistance to papaya ringspot virus in transgenic Nicotiana benthamiana

DOI
https://doi.org/10.14719/pst.9312
Submitted
5 May 2025
Published
29-08-2025
Versions

Abstract

In the present study, cDNA from a papaya leaf sample infected with Papaya Ringspot Virus (PRSV) was used for the amplification of the HC-Pro gene, which yielded an expected amplicon size of ~1350 bp. The partial coding sequence of HC-Pro was used to design a hairpin RNA (hpRNA) construct, which included a cowpea spliceosomal intron (148 bp) inserted between the hpRNA arms (ihpRNA HC-Pro). The potential siRNAs and Virus Induced Gene Silencing (VIGS) sequence predicted by integrated bioinformatics tools (siDirect 2.0 and pssRNAit) identified the best region of 201 bp (557-757 bp). The designed intron hairpin RNA (ihpRNA) HC-Pro was synthesized and cloned into the plant expression vector (pBI121) and the resulting recombinant plasmids (pBI121::CaMV35s::ihpRNA-HC-Pro::NOS) were subsequently transformed into Agrobacterium tumefaciens (LBA4404) followed by co-cultivation in N. benthamiana, a model plant. Molecular confirmation of the T0 lines via PCR indicated that three out of four plants were contaminated with Agrobacterium in the apoplast. A single line that was positive for ihpRNA HC-Pro amplification and negative for VirG, was forwarded to the T1 generation. Six out of ten T1 lines were amplified for ihpRNA HC-Pro. Single copy insertions were confirmed by southern blotting. Bioassay and gene expression tests in T1 transgenic plants showed lower levels of NbPOD, NbAPX, NbCAT and HcPro, like healthy plants, suggesting that PRSV resistance was successfully achieved through ihpRNA-mediated gene silencing.

References

  1. 1. Yeh SD, Gonsalves D. Translation of papaya ringspot virus RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical inclusion protein and amorphous inclusion protein. Virology. 1985;143(1):260-71. https://doi.org/10.1016/0042-6822(85)90113-8
  2. 2. Herold F, Weibel J. Electron microscopic demonstration of papaya ringspot virus. Virology. 1962;18(2):302-11. https://doi.org/10.1016/0042-6822(62)90017-X
  3. 3. Purcifull DE. Papaya ringspot virus. CMI/AAB Descr Plant Viruses. 1984:292.
  4. 4. Murphy FA. Virus taxonomy: 6th report of the International Committee on Taxonomy of Viruses. Arch Virol Suppl. 1995;10:1-586.
  5. 5. Bateson MF, Henderson J, Chaleeprom W, Gibbs AJ, Dale JL. Papaya ringspot potyvirus: isolate variability and the origin of PRSV type P (Australia). J Gen Virol. 1994;75(12):3547-53. https://doi.org/10.1099/0022-1317-75-12-3547
  6. 6. Sharma SK, Tripathi S. Horticultural characterization and papaya ringspot virus reaction of papaya Pune Selections. Indian J Hortic. 2019;76(1):32-7. https://doi.org/10.5958/0974-0112.2019.00005.7
  7. 7. Gonsalves D, Tripathi S, Carr JB, Suzuki JY. Papaya ringspot virus. Plant Health Instr. 2010;10:1094. https://doi.org/10.1094/PHII2010100401
  8. 8. Cheng YH, Yang JS, Yeh SD. Efficient transformation of papaya by coat protein encoding gene of papaya ringspot virus mediated by Agrobacterium following liquid phase wounding of embryogenic tissues with carborundum. Plant Cell Rep. 1996;16:127-32. https://doi.org/10.1007/BF01890852
  9. 9. Kung YJ, You BJ, Raja JA, Chen KC, Huang CH, Bau HJ, et al. Nucleotide sequence homology independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Sci Rep. 2015;5:9804. https://doi.org/10.1038/srep09804
  10. 10. Mahanthappa N. Translating RNA interference into therapies for human disease. Mol Diagn Ther. 2005;6(8):879. https://doi.org/10.2217/14622416.6.8.879
  11. 11. Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A. Expression of self complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnol. 2003;3:7. https://doi.org/10.1186/1472-6750-3-7
  12. 12. Hasiów Jaroszewska B, Fares MA, Elena SF. Molecular evolution of viral multifunctional proteins: the case of potyvirus HC-Pro. J Mol Evol. 2014;78:75-86. https://doi.org/10.1007/s00239-013-9601-0
  13. 13. Atreya CD, Pirone TP. Mutational analysis of the helper component proteinase gene of a potyvirus: effects of amino acid substitutions, deletions and gene replacement on virulence and aphid transmissibility. Proc Natl Acad Sci U S A. 1993;90(24):11919-23. https://doi.org/10.1073/pnas.90.24.11919
  14. 14. Atreya CD, Atreya PL, Thornbury DW, Pirone TP. Site directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation and symptom expression in infected tobacco plants. Virology. 1992;191(1):106-11. https://doi.org/10.1016/0042-6822(92)90171-K
  15. 15. Yang X, Niu L, Zhang W, He H, Yang J, Xing G, et al. Robust RNAi mediated resistance to infection of seven potyvirids in soybean expressing an intron hairpin NIb RNA. Transgenic Res. 2017;26:665-76. https://doi.org/10.1007/s11248-017-0041-2
  16. 16. Zhou MY, Gomez Sanchez CE. Universal TA cloning. Curr Issues Mol Biol. 2000;2(1):1-7.
  17. 17. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166(4):557-80. https://doi.org/10.1016/S0022-2836(83)80284-8
  18. 18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-80. https://doi.org/10.1093/nar/22.22.4673
  19. 19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-26. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  20. 20. Naito Y, Yoshimura J, Morishita S, Ui Tei K. siDirect 2.0: updated software for designing functional siRNA with reduced seed dependent off target effect. BMC Bioinformatics. 2009;10:392. https://doi.org/10.1186/1471-2105-10-392
  21. 21. ElHefnawi M, Kim T, Kamar MA, Min S, Hassan NM, El Ahwany A, et al. In silico design and experimental validation of siRNAs targeting conserved regions of multiple hepatitis C virus genotypes. PLoS One. 2016;11(7):e0159211. https://doi.org/10.1371/journal.pone.0159211
  22. 22. Fakhr E, Zare F, Teimoori Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016;23(4):73-82. https://doi.org/10.1038/cgt.2016.4
  23. 23. Nur SM, Hasan MA, Amin MA, Hossain M, Sharmin T. Design of potential RNAi (miRNA and siRNA) molecules for Middle East respiratory syndrome coronavirus (MERS CoV) gene silencing by computational method. Interdiscip Sci Comput Life Sci. 2015;7:257-65. https://doi.org/10.1007/s12539-015-0266-9
  24. 24. Sohrab SS, El Kafrawy SA, Mirza Z, Kamal MA, Azhar EI. Design and delivery of therapeutic siRNAs: application to MERS coronavirus. Curr Pharm Des. 2018;24(1):62-77. https://doi.org/10.2174/1381612823666171109112307
  25. 25. Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, et al. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol. 2007;81(23):13135-48. https://doi.org/10.1128/jvi.01031-07
  26. 26. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001
  27. 27. Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SM, Rajvanshi PK, Jayabaskaran C. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci. 2007;93(6):770-2.
  28. 28. Khanna H, Daggard G. Agrobacterium tumefaciens mediated transformation of wheat using a superbinary vector and a polyamine supplemented regeneration medium. Plant Cell Rep. 2003;21:429-36. https://doi.org/10.1007/s00299-002-0529-x
  29. 29. Doyle J. DNA protocols for plants. In: Hewitt GM, Johnston A, editors. Molecular techniques in taxonomy. Berlin, Heidelberg: Springer.1991:283-93. https://doi.org/10.1007/978-3-642-83962-7_18
  30. 30. Komarova AV, Haenni AL, Ramírez BC. Virus versus host cell translation: love and hate stories. Adv Virus Res. 2009;73:99-170. https://doi.org/10.1016/S0065-3527(09)73003-9
  31. 31. Ruanjan P, Kertbundit S, Juříček M. Posttranscriptional gene silencing is involved in resistance of transgenic papayas to papaya ringspot virus. Biol Plant. 2007;51:517-20. https://doi.org/10.1007/s10535-007-0110-0
  32. 32. Castillo XO, Fermin G, Tabima J, Rojas Y, Tennant PF, Fuchs M, et al. Phylogeography and molecular epidemiology of Papaya ringspot virus. Virus Res. 2011;159(2):132-40. https://doi.org/10.1016/j.virusres.2011.04.011
  33. 33. Yeh SD, Jan FJ, Chiang CH, Doong TJ, Chen MC, Chung PH, et al. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J Gen Virol. 1992;73(10):2531-41. https://doi.org/10.1099/0022-1317-73-10-2531
  34. 34. Wei JY, Liu DB, Li XY, Zhou P. Variation in the coat protein encoding gene of Papaya ringspot virus isolates from multiple locations of China. J Integr Plant Biol. 2007;49(7):1062-9. https://doi.org/10.1111/j.1672-9072.2007.00477.x
  35. 35. Mishra R, Patil S, Patil A, Patil BL. Sequence diversity studies of papaya ringspot virus isolates in South India reveal higher variability and recombination in the 5′ terminal gene sequences. Virus Dis. 2019;30:261-8. https://doi.org/10.1007/s13337-019-00512-x
  36. 36. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, et al. Construct design for efficient, effective and high throughput gene silencing in plants. Plant J. 2001;27(6):581-90. https://doi.org/10.1046/j.1365-313X.2001.01105.x
  37. 37. Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, et al. Transformation of Mexican lime with an intron hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J. 2012;10(5):597-608. https://doi.org/10.1111/j.1467-7652.2012.00691.x
  38. 38. Ahmed F, Senthil Kumar M, Dai X, Ramu VS, Lee S, Mysore KS, et al. pssRNAit: a web server for designing effective and specific plant siRNAs with genome wide off target assessment. Plant Physiol. 2020;184(1):65-81. https://doi.org/10.1104/pp.20.00293
  39. 39. Nicola Negri ED, Brunetti A, Tavazza M, Ilardi V. Hairpin RNA mediated silencing of plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res. 2005;14:989-94. https://doi.org/10.1007/s11248-005-1773-y
  40. 40. Hu Q, Niu Y, Zhang K, Liu Y, Zhou X. Virus derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus. Virol J. 2011;8:41. https://doi.org/10.1186/1743-422X-8-41
  41. 41. Hily JM, Ravelonandro M, Damsteegt V, Bassett C, Petri C, Liu Z, Scorza R. Plum pox virus coat protein encoding gene intron hairpin RNA (ihpRNA) constructs provide resistance to plum pox virus in Nicotiana benthamiana and Prunus domestica. J Am Soc Hortic Sci. 2007;132(6):850-8. https://doi.org/10.21273/JASHS.132.6.850
  42. 42. Fuentes A, Ramos PL, Fiallo E, Callard D, Sánchez Y, Peral R, et al. Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Res. 2006;15:291-304. https://doi.org/10.1007/s11248-005-5238-0
  43. 43. Bahar T, Qureshi AM, Qurashi F, Abid M, Zahra MB, Haider MS. Changes in phytochemical status upon viral infections in plant: a critical review. Phyton. 2021;90(1):75. https://doi.org/10.32604/phyton.2020.010597
  44. 44. Radwan DEM, Fayez KA, Mahmoud SY, Lu G. Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiol Plant. 2010;32:891-904. https://doi.org/10.1007/s11738-010-0477-y
  45. 45. Overmyer K, Brosché M, Kangasjärvi J. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 2003;8(7):335-42. https://doi.org/10.1016/S1360-1385(03)00135-3
  46. 46. Hernández JA, Rubio M, Olmos E, Ros Barceló A, Martínez Gómez P. Oxidative stress induced by long term plum pox virus infection in peach (Prunus persica). Physiol Plantarum. 2004;122(4):486-95. https://doi.org/10.1111/j.1399-3054.2004.00431.x
  47. 47. Hernández JA, Díaz Vivancos P, Rubio M, Olmos E, Ros Barceló A, Martínez Gómez P. Long term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Physiol Plant. 2006;126(1):140-52. https://doi.org/10.1111/j.1399-3054.2005.00581.x
  48. 48. Díaz Vivancos P, Clemente Moreno MJ, Rubio M, Olmos E, García JA, Martínez Gómez P, et al. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot. 2008;59(8):2147-60. https://doi.org/10.1093/jxb/ern082
  49. 49. Manacorda CA, Mansilla C, Debat HJ, Zavallo D, Sánchez F, Ponz F, et al. Salicylic acid determines differential senescence produced by two Turnip mosaic virus strains involving reactive oxygen species and early transcriptomic changes. Mol Plant Microbe Interact. 2013;26(12):1486-98. https://doi.org/10.1094/MPMI-07-13-0190-R
  50. 50. Arias MC, Luna C, Rodríguez M, Lenardon S, Taleisnik E. Sunflower chlorotic mottle virus in compatible interactions with sunflower: ROS generation and antioxidant response. Eur J Plant Pathol. 2005;113:223-32. https://doi.org/10.1007/s10658-005-7559-5

Downloads

Download data is not yet available.