Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Toxicological evaluation of Calotropis gigantea (L.) W. T. Aiton (Apocynaceae) stem extract in zebrafish: A chronic exposure study

DOI
https://doi.org/10.14719/pst.9323
Submitted
6 May 2025
Published
24-07-2025 — Updated on 01-08-2025
Versions

Abstract

Calotropis gigantea is widely used in traditional medicine across rural and tribal regions for treating various ailments. The safety profile of this plant especially in concerning long term or high dose exposure, remains inadequately studied. This study aims to scientifically assess the toxicity of C. gigantea stem extract using zebrafish (Danio rerio) as a model organism. Chronic exposure over 10, 20 and 30 days revealed significant oxidative stress, mitochondrial impairment and histopathological alterations in vital organs. Key antioxidant enzymes   glutathione reductase (GR), glutathione S-transferase (GST), succinate dehydrogenase (SDH), catalase (CAT) and superoxide dismutase (SOD) were analysed in the liver, gills, brain and muscles. Enzyme activity has initially increased but declined by the 30th day, indicating progressive oxidative damage. The liver and gills exhibited the most substantial biochemical and structural changes. The histological analysis confirmed cellular degeneration, inflammation and necrosis. These findings highlight the potential risks associated with unregulated therapeutic use of C. gigantea and emphasize the need for scientific validation and public awareness to ensure safe application.

References

  1. 1. Borgia V, Carlin MG, Crezzini J. Poison, plants and palaeolithic hunters. An analytical method to investigate the presence of plant poison on archaeological artefacts. Quat Int. 2017;427:94–103. https://doi.org/10.1016/j.quaint.2015.12.025
  2. 2. Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, et al. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology (Basel). 2021;10(4):267. https://doi.org/10.3390/biology10040267
  3. 3. Rani R, Sharma D, Chaturvedi M, Yadav JP. Phytochemical analysis, antibacterial and antioxidant activity of Calotropis procera and Calotropis gigantea. Nat Prod J. 2019;9(1):47–60. https://doi.org/10.2174/2210315508666180608081407
  4. 4. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1–26. https://doi.org/10.1155/2012/217037
  5. 5. Liu N, Lin Z, Guan L, Gaughan G, Lin G. Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis. PLoS One. 2014;9(2):e87588. https://doi.org/10.1371/journal.pone.0087588
  6. 6. You H, Lei M, Song W, Chen H, Meng Y, Guo D, et al. Cytotoxic cardenolides from the root bark of Calotropis gigantea. Steroids. 2013;78(10):1029–34. https://doi.org/10.1016/j.steroids.2013.06.002
  7. 7. Ahmed OM, Fahim HI, Boules MW, Ahmed HY. Cardiac and testicular toxicity effects of the latex and ethanolic leaf extract of Calotropis procera on male albino rats in comparison to abamectin. Springerplus. 2016;5:1644. https://doi.org/10.1186/s40064-016-3326-7
  8. 8. Basak SK, Bhaumik A, Mohanta A, Singhal P. Ocular toxicity by latex of Calotropis procera (Sodom apple). Indian J Ophthalmol. 2009;57(3):232–4. https://doi.org/10.4103/0301-4738.49402
  9. 9. Manjunatha SA, Venkataramana PA, Rajshekar, Siddegowda S. Ocular toxicity due to accidental exposure to plant latex by Calotropis procera and Calotropis gigantea. J Clin Diagn Res; 2021. https://doi.org/10.7860/jcdr/2021/49510.15334
  10. 10. Goyal A, Kumar D. Ocular toxicity by latex of Calotropis procera in Rajasthan. J Evol Med Dent Sci. 2014;3(56):12808–12. https://doi.org/10.14260/jemds/2014/3699
  11. 11. Segner H. Danio rerio as a model organism for investigating endocrine disruption. Comp Biochem Physiol C Toxicol Pharmacol. 2009;149(2):187–95. https://doi.org/10.1016/j.cbpc.2008.10.099
  12. 12. Rajput VD, Minkina T, Yaning C, Sushkova S, Chapligin VA, Mandzhieva S. A review on salinity adaptation mechanism and characteristics of Populus euphratica, a boon for arid ecosystems. Sheng Tai Xue Bao. 2016;36(6):497–503. https://doi.org/10.1016/j.chnaes.2016.08.001
  13. 13. Sabry MM, El-Halawany AM, Fahmy WG, Eltanany BM, Pont L, Benavente F, et al. Evidence on the inhibitory effect of Brassica plants against Acinetobacter baumannii lipases: phytochemical analysis, in vitro and molecular docking studies. BMC Complement Med Ther. 2024;24:164. https://doi.org/10.1186/s12906-024-04460-y
  14. 14. OECD. OECD guidelines for the testing of chemicals, section 2 test no 203: fish, acute toxicity test. Paris: OECD Publishing; 2019.
  15. 15. Islam MA, Amin SMN, Brown CL, Juraimi AS, Uddin MK, Arshad A. Determination of median lethal concentration for endosulfan, heptachlor and dieldrin pesticides to African catfish and their impact on its behavioral patterns and histopathological responses. Toxics. 2021;9(12):34. https://doi.org/10.3390/toxics9120340
  16. 16. Saleh Alanazi SH, Farooq Khan M, Alazami AM, Baabbad A, Ahmed Wadaan M. Calotropis procera: a double edged sword against glioblastoma, inhibiting glioblastoma cell line growth by targeting histone deacetylases and angiogenesis. Heliyon. 2024;10(2):e24406. https://doi.org/10.1016/j.heliyon.2024.e24406
  17. 17. Rajha HN, Louka N, Darra NE, Hobaika Z, Boussetta N, Vorobiev E, et al. Multiple response optimization of high-temperature, low-time aqueous extraction process of phenolic compounds from grape byproducts. Food Nutr Sci. 2014;5(4):351–60. https://doi.org/10.4236/fns.2014.54042
  18. 18. Ahmad Nejhad A, Alizadeh Behbahani B, Hojjati M, Vasiee A, Mehrnia MA. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci Rep. 2023;13:14716. https://doi.org/10.1038/s41598-023-42086-1
  19. 19. Clarke G, Ting KN, Wiart C, Fry J. High correlation of DPPH radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian Rainforest. Antioxidants (Basel). 2013;2(1):1–10. https://doi.org/10.3390/antiox2010001
  20. 20. Griffin SP, Bhagooli R. Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Bio Ecol. 2004;302(2):201–11. https://doi.org/10.1016/j.jembe.2003.10.008
  21. 21. Hamelet J, Seltzer V, Petit E, Noll C, Andreau K, Delabar JM, et al. Cystathionine beta synthase deficiency induces catalase-mediated hydrogen peroxide detoxification in mice liver. Biochim Biophys Acta. 2008;1782(7-8):482–8. https://doi.org/10.1016/j.bbadis.2008.05.003
  22. 22. Alici E, Arabaci G. Determination of SOD, POD, PPO and CAT enzyme activities in Rumex obtusifolius L. Annu Res Rev Biol. 2016;11(3):1–7. https://doi.org/10.9734/arrb/2016/29809
  23. 23. Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010;5(1):51–66. https://doi.org/10.1038/nprot.2009.197
  24. 24. Jones AJY, Hirst J. A spectrophotometric coupled enzyme assay to measure the activity of succinate dehydrogenase. Anal Biochem. 2013;442(1):19–23. https://doi.org/10.1016/j.ab.2013.07.018
  25. 25. Vontas JG, Enayati AA, Small GJ, Hemingway J. A simple biochemical assay for glutathione S-transferase activity and its possible field application for screening glutathione S-transferase-based insecticide resistance. Pestic Biochem Physiol. 2000;68(3):184–92. https://doi.org/10.1006/pest.2000.2512
  26. 26. Devanesan S, AlSalhi MS. Identification, evaluation of the source of natural bioactive compounds from Calotropis gigantea L. flowers and their anticancer potential. J King Saud Univ Sci. 2024;36(2):103038. https://doi.org/10.1016/j.jksus.2023.103038
  27. 27. Lalhminghlui K, Jagetia GC. Evaluation of the free-radical scavenging and antioxidant activities of Schima wallichii Korth in vitro. Future Sci OA. 2018;4(2):FSO272. https://doi.org/10.4155/fsoa-2017-0086
  28. 28. Mbinda W, Musangi C. Antioxidant activity, total phenolic and total flavonoid contents of stem bark and root methanolic extracts of Calotropis procera. J Phytopharm. 2019;8(4):161–6. https://doi.org/10.31254/phyto.2019.8403
  29. 29. Zucchi S, Blüthgen N, Ieronimo A, Fent K. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol Appl Pharmacol. 2011;250(2):137–46. https://doi.org/10.1016/j.taap.2010.10.001
  30. 30. Huang X, Li Y, Wang T, Liu H, Shi J, Zhang X. Evaluation of the oxidative stress status in zebrafish liver induced by three typical organic UV filters (BP-4, PABA and PBSA). Int J Environ Res Public Health. 2020;17(2):651. https://doi.org/10.3390/ijerph17020651
  31. 31. Bayır M, Bayır A, Uzun BN, Turhan S. Investigating the genomic and biochemical effects of dalapon on antioxidant systems in zebrafish. Toxicol Mech Methods. 2025:1–16. https://doi.org/10.1080/15376516.2025.2473525
  32. 32. Li C, Qin L, Qu R, Sun P, Wang Z. Responses of antioxidant defense system to polyfluorinated dibenzo-p-dioxins (PFDDs) exposure in liver of freshwater fish Carassius auratus. Ecotoxicol Environ Saf. 2016;126:170–6. https://doi.org/10.1016/j.ecoenv.2015.12.036
  33. 33. van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol. 2003;13(2):57–149. https://doi.org/10.1016/s1382-6689(02)00126-6
  34. 34. Sayeed I, Parvez S, Pandey S, Bin-Hafeez B, Haque R, Raisuddin S. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish Channa punctatus Bloch. Ecotoxicol Environ Saf. 2003;56(2):295–301. https://doi.org/10.1016/s0147-6513(03)00009-5
  35. 35. Li ZH, Velisek J, Zlabek V, Grabic R, Machova J, Kolarova J, et al. Hepatic antioxidant status and hematological parameters in rainbow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chem Biol Interact. 2010;183(1):98–104. https://doi.org/10.1016/j.cbi.2009.09.009
  36. 36. Costantini D. Oxidative stress and hormesis in evolutionary ecology and physiology: a marriage between mechanistic and evolutionary approaches. Springer. 2014:359
  37. 37. Schlenk D, Benson WH. Target organ toxicity in marine and freshwater teleosts: organs. CRC Press. 2003:426
  38. 38. Stara A, Kristan J, Zuskova E, Velisek J. Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Pestic Biochem Physiol. 2013;105(1):18–23. https://doi.org/10.1016/j.pestbp.2012.11.002
  39. 39. Feng M, Qu R, Wang C, Wang L, Wang Z. Comparative antioxidant status in freshwater fish Carassius auratus exposed to six current-use brominated flame retardants: a combined experimental and theoretical study. Aquat Toxicol. 2013;140-41:314–23. https://doi.org/10.1016/j.aquatox.2013.07.001
  40. 40. Lana JV, Rios A, Takeyama R, Santos N, Pires L, Santos GS, et al. Nebulized glutathione as a key antioxidant for the treatment of oxidative stress in neurodegenerative conditions. Nutrients. 2024;16(15):2476. https://doi.org/10.3390/nu16152476
  41. 41. Tierbach A, Groh KJ, Schönenberger R, Schirmer K, Suter MJF. Glutathione S-transferase protein expression in different life stages of zebrafish (Danio rerio). Toxicol Sci. 2018;162(2):702–12. https://doi.org/10.1093/toxsci/kfx293
  42. 42. Oruc EO, Sevgiler Y, Uner N. Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comp Biochem Physiol C Toxicol Pharmacol. 2004;137(1):43–51. https://doi.org/10.1016/j.cca.2003.11.006
  43. 43. Monteiro DA, de Almeida JA, Rantin FT, Kalinin AL. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C Toxicol Pharmacol. 2006;143(2):141–9. https://doi.org/10.1016/j.cbpc.2006.01.004
  44. 44. Yang Y, Liu W, Mu X, Qi S, Fu B, Wang C. Biological response of zebrafish embryos after short-term exposure to thifluzamide. Sci Rep. 2016;6:38485. https://doi.org/10.1038/srep38485
  45. 45. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25(34):4675–82. https://doi.org/10.1038/sj.onc.1209594
  46. 46. Van Vranken JG, Bricker DK, Dephoure N, Gygi SP, Cox JE, Thummel CS, et al. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab. 2014;20(2):241–52. https://doi.org/10.1016/j.cmet.2014.05.012
  47. 47. Shi S, Wang L, van der Laan LJW, Pan Q, Verstegen MMA. Mitochondrial dysfunction and oxidative stress in liver transplantation and underlying diseases: new insights and therapeutics. Transplantation. 2021;105(11):2362–73. https://doi.org/10.1097/TP.0000000000003691
  48. 48. Campbell RJ, Jasmin BJ, Michel RN. Succinate dehydrogenase activity within synaptic and extrasynaptic compartments of functionally-overloaded rat skeletal muscle fibers. Pflugers Arch. 1996;431(5):797–9. https://doi.org/10.1007/BF02253847
  49. 49. Sawong S, Pekthong D, Suknoppakit P, Winitchaikul T, Kaewkong W, Somran J, et al. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep. 2022;12(1):12151. https://doi.org/10.1038/s41598-022-16321-0
  50. 50. Flores-Lopes F, Thomaz AT. Histopathologic alterations observed in fish gills as a tool in environmental monitoring. Braz J Biol. 2011;71(1):179–88. https://doi.org/10.1590/s1519-69842011000100026
  51. 51. van den Heuvel MR, Power M, Richards J, MacKinnon M, Dixon DG. Disease and gill lesions in yellow perch (Perca flavescens) exposed to oil sands mining-associated waters. Ecotoxicol Environ Saf. 2000;46(3):334–41. https://doi.org/10.1006/eesa.1999.1912
  52. 52. Stancova V, Plhalova L, Tichy F, Doubkova V, Marsalek P, Hostovsky M, et al. Oxidative stress indices and histopathological effects of the nonsteroidal antiinflammatory drug naproxen in adult zebrafish (Danio rerio). Neuro Endocrinol Lett. 2015;36(Suppl 1):73–8.
  53. 53. Wilson JM, Laurent P. Fish gill morphology: inside out. J Exp Zool. 2002;293(3):192–211. https://doi.org/10.1002/jez.10124
  54. 54. Xavier J, Jose J, Reddy J, Ka P. Histopathological and toxicological studies on zebrafish using white-fruited and green-fruited varieties of. Scientifica (Cairo). 2024;2024:4689625. https://doi.org/10.1155/2024/4689625
  55. 55. Zulfahmi I, Batubara AS, Perdana AW, Rahmah A, Nafis B, Ali R, et al. Chronic exposure to palm oil mill effluent induces oxidative stress and histopathological changes in zebrafish (Danio rerio). J Hazard Mater. 2025;490:137844. https://doi.org/10.1016/j.jhazmat.2025.137844
  56. 56. Mullick FG, Ishak KG. Hepatic injury associated with diphenylhydantoin therapy. A clinicopathologic study of 20 cases. Am J Clin Pathol. 1980;74(4):442–52. https://doi.org/10.1093/ajcp/74.4.442
  57. 57. Scully LJ, Clarke D, Barr RJ. Diclofenac induced hepatitis. 3 cases with features of autoimmune chronic active hepatitis. Dig Dis Sci. 1993;38(4):744–51. https://doi.org/10.1007/BF01316809
  58. 58. Sun S, Wang Y, Du Y, Sun Q, He L, Zhu E, et al. Oxidative stress-mediated hepatotoxicity in rats induced by ethanol extracts of different parts of S. Pharm Biol. 2020;58(1):1277–89. https://doi.org/10.1080/13880209.2020.1859552
  59. 59. Joystu D. Bioaccumulation of toxic heavy metals in the edible fishes of eastern Kolkata wetlands (EKW), the designated Ramsar site of West Bengal, India. Int J Aquac Fish Sci. 2017:18–21. https://doi.org/10.17352/2455-8400.000023
  60. 60. Roemhildt ML, Beynnon BD, Gauthier AE, Gardner-Morse M, Ertem F, Badger GJ. Chronic in vivo load alteration induces degenerative changes in the rat tibiofemoral joint. Osteoarthritis Cartilage. 2013;21(2):346–57. https://doi.org/10.1016/j.joca.2012.10.014
  61. 61. de Oliveira Ribeiro CA, Nathalie MD, Gonzalez P, Yannick D, Jean-Paul B, Boudou A, et al. Effects of dietary methylmercury on zebrafish skeletal muscle fibres. Environ Toxicol Pharmacol. 2008;25(3):304–9. https://doi.org/10.1016/j.etap.2007.10.033
  62. 62. Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: a model for the study of toxicants affecting muscle development and function. Int J Mol Sci. 2016;17(11):1941. https://doi.org/10.3390/ijms17111941
  63. 63. Alkshab AA, Taha AM. Histological effect of lead chloride on the brain of Gambusia affinis. J Phys Conf Ser. 2021;1818(1):012024. https://doi.org/10.1088/1742-6596/1818/1/012024
  64. 64. Gupta RC, Lall R, Srivastava A. Nutraceuticals: efficacy, safety and toxicity. Academic Press. 2021:1397.

Downloads

Download data is not yet available.