Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Biostimulant for sustainable pulse production - a review

DOI
https://doi.org/10.14719/pst.9336
Submitted
7 May 2025
Published
14-07-2025 — Updated on 24-07-2025
Versions

Abstract

Globally, agriculture is facing a pressing situation, such as climate change, degradation of soil health and the necessity for sustainable food production. Biostimulants provide novel solutions to improve agricultural practices and crop productivity. Biostimulants are plant-promoting substances/microorganisms that are organic and help to increase the nutrient uptake, growth and yield of the crop, provide tolerance to abiotic and biotic challenges and improve product quality. Humic acid (HA), fulvic acid (FA), protein hydrolysates, seaweed extracts, chitosan, microbial biostimulants such as arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR), inorganic compounds like silicon, selenium and phosphite are different types of biostimulants to enhance plant production and productivity. Unlike fertilizers, biostimulants do not pose any threat to the environment. Pulses are rich in nutrients and increasing their productivity can increase the health of the people and result in an overall increase in the growth of economy. Despite having excellent nutritional value and agricultural importance, the productivity of pulses is not up to its potential. The production and productivity are inadequate to meet the growing population's demand. Farmers growing pulses are unaware of certain package of practices and recent technological developments. Numerous studies report improvement in biomass accumulation, The present review is focused on how application of biostimulants increase the growth and yield of pulses, nutritional uptake by the plants and its potential as sustainable inputs. It aims to highlight the most significant results obtained for different pulse crops and intends to highlight the knowledge gap in biostimulants research in context of plant growth promotion. The future of widespread application of biostimulants depends on precision agriculture, market maturity and further research to harness their potential.

References

  1. 1. Mishra P, Yonar A, Yonar H, Kumari B, Abotaleb M, Das SS, Patil SG. State of the art in total pulse production in major states of India using ARIMA techniques. Current Research in Food Science. 2021;4:800–6. https://doi.org/10.1016/j.crfs.2021.10.009
  2. 2. Semwal P, Painuli S, JP SB, JamLoki A, Rauf A, Olatunde A, Rahman MM, Mukerjee N, Khalil AA, Aljohani AS, Al Abdulmonem W. Exploring the nutritional and health benefits of pulses from the Indian Himalayan region: A glimpse into the region’s rich agricultural heritage. Food Chemistry. 2023;422:136259. https://doi.org/10.1016/j.foodchem.2023.136259
  3. 3. Venkidasamy B, Selvaraj D, Nile AS, Ramalingam S, Kai G, Nile SH. Indian pulses: A review on nutritional, functional and biochemical properties with future perspectives. Trends in Food Science & Technology. 2019;88:228–42. https://doi.org/10.1016/j.tifs.2019.03.012
  4. 4. Bhat S, Aditya KS, Kumari B, Acharya KK, Sendhil R. Pulses production, trade and policy imperatives: A global perspective. In: Advances in legumes for sustainable intensification. Academic Press; 2022. p. 639–56. https://doi.org/10.1016/B978-0-323-85797-0.00018-5
  5. 5. Kumari N, Malik D. Status, growth and variability of pulses in India. 2023. Available from: https://www.thepharmajournal.com/archives/2023/vol12issue5/PartAI/12-4-463-919.pdf
  6. 6. Chaturvedi SK, Sandhu JS. Silent revolution in pulses production–India marching towards self sufficiency. The Indian Journal of Agricultural Sciences. 2020;90(1):17–24. https://doi.org/10.56093/ijas.v90i1.98521
  7. 7. Food and Agricultural Organization Corporate Statistical Database. Food and agriculture organization of the United Nations (FAO); 2016. Available from: http://www.fao.org/faostat/en/-data/QC
  8. 8. Day L. Proteins from land plants–potential resources for human nutrition and food security. Trends in Food Science & Technology. 2013;32(1):25–42. https://doi.org/10.1016/j.tifs.2013.05.005
  9. 9. Puglia D, Pezzolla D, Gigliotti G, Torre L, Bartucca ML, Del Buono D. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers and biopolymers. Sustainability. 2021;13(5):2710. https://doi.org/10.3390/su13052710
  10. 10. Zhang X, Yin J, Ma Y, Peng Y, Fenton O, Wang W, Zhang W, Chen Q. Unlocking the potential of biostimulants derived from organic waste and by product sources: improving plant growth and tolerance to abiotic stresses in agriculture. Environmental Technology & Innovation. 2024;34:103571. https://doi.org/10.1016/j.eti.2024.103571
  11. 11. Mehmood N, Song X, Tian G, Hou Z, Chen D, Fan Z, Qin M, Gao X, Liu JM. Strain mediated electric manipulation of magnetic skyrmion and other topological states in geometric confined nanodiscs. Journal of Physics D: Applied Physics. 2019;53(1):014007. https://doi.org/10.1088/1361-6463/ab47bd
  12. 12. Grammenou A, Petropoulos SA, Thalassinos G, Rinklebe J, Shaheen SM, Antoniadis V. Biostimulants in the soil–plant interface: agro environmental implications—a review. Earth Systems and Environment. 2023;7(3):583–600. https://doi.org/10.1007/s41748-023-00349-x
  13. 13. Ogunsanya HY, Motti P, Li J, Trinh HK, Xu L, Bernaert N, Van Droogenbroeck B, Murvanidze N, Werbrouck SP, Mangelinckx S, Ramirez A. Belgian endive derived biostimulants promote shoot and root growth in vitro. Scientific reports. 2022;12(1):8792. https://doi.org/10.1038/s41598-022-12815-z
  14. 14. Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, Spinelli F. Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy. 2020;10(6):794. https://doi.org/10.3390/agronomy10060794
  15. 15. Petropoulos SA, Taofiq O, Fernandes Â, Tzortzakis N, Ciric A, Sokovic M, Barros L, Ferreira IC. Bioactive properties of greenhouse cultivated green beans (Phaseolus vulgaris L.) under biostimulants and water stress effect. Journal of the Science of Food and Agriculture. 2019;99(13):6049–59. https://doi.org/10.1002/jsfa.9881
  16. 16. Du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Scientia horticulturae. 2015;196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  17. 17. The Directorate of Economics and Statistics (DES), Min. of Agriculture & Farmers’ Welfare. National pulses scenario, normal 2018–19 to 2022–23. DES; 2024.
  18. 18. Revanasidda R, Srivastav S, Bandi M, Lamichaney A, Katiyar PK, Venna P, Dixit S, Singh B, Sewak S. Insect pests of stored pulses and their management [Internet]. 2024. Available from: https://doi.org/10.13140/RG.2.2.22947.26400
  19. 19. Dubey A, Kumar A, Khan ML. Role of biostimulants for enhancing abiotic stress tolerance in Fabaceae plants. In: The Plant Family Fabaceae: Biology and Physiological Responses to Environmental Stresses. 2020. p. 223–36. https://doi.org/10.1007/978-981-15-4752-2_8
  20. 20. Czelej M, Czernecki T, Garbacz K, Wawrzykowski J, Jamioł M, Michalak K, Walczak N, Wilk A, Waśko A. Egg yolk as a new source of peptides with antioxidant and antimicrobial properties. Foods. 2023;12(18):3394. https://doi.org/10.3390/foods12183394
  21. 21. Shahrajabian MH, Cheng Q, Sun W. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Patents on Biotechnology. 2023;17(3):206–44. https://doi.org/10.2174/1872208316666220513093021
  22. 22. Lau SE, Teo WF, Teoh EY, Tan BC. Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discover Food. 2022;2(1):9. https://doi.org/10.1007/s44187-022-00009-5
  23. 23. Khalesi A, Mousavi Mirkalaeia SA, Modarres Sanavy SA, Eftekhari A, Moghadam MN. Effect of foliar application of amino acids on grain yield and physiological traits of chickpea under drought stress. Gesunde Pflanzen. 2023;75(5):1705–18. https://doi.org/10.1007/s10343-022-00821-0
  24. 24. Wang D, Deng X, Wang B, Zhang N, Zhu C, Jiao Z, et al. Effects of foliar application of amino acid liquid fertilizers, with or without Bacillus amyloliquefaciens SQR9, on cowpea yield and leaf microbiota. PLoS One. 2019;14(9):e0222048. https://doi.org/10.1371/journal.pone.0222048
  25. 25. Toscano S, Gómez Bellot MJ, Romano D, Sánchez Blanco MJ. Physiological and biochemical changes in response to Moringa oleifera biostimulant in petunia plants under water deficit. Scientia Horticulturae. 2023;319:112187. https://doi.org/10.1016/j.scienta.2023.112187
  26. 26. Al Karaki GN, Othman Y. Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. South African Journal of Botany. 2023;154:225–31. https://doi.org/10.1016/j.sajb.2023.01.034
  27. 27. Mpai S, Mokganya LM, Raphoko L, Masoko P, Ndhlala AR. Untargeted metabolites and chemometric approach to elucidate the response of growth and yield attributes on different concentrations of an amino acid based biostimulant in two lettuce cultivars. Scientia Horticulturae. 2022;306:111478. https://doi.org/10.1016/j.scienta.2022.111478
  28. 28. Hidalgo Santiago L, Navarro León E, López Moreno FJ, Arjó G, González LM, Ruiz JM, et al. The application of the silicon based biostimulant Codasil® offset water deficit of lettuce plants. Scientia Horticulturae. 2021;285:110177. https://doi.org/10.1016/j.scienta.2021.110177
  29. 29. Hosseini S, Shabani L, Sabzalian MR, Gharibi S. Foliar spray of commercial seaweed and amino acid derived biostimulants promoted phytoremediation potential and salinity stress tolerance in halophytic grass, Puccinellia distans. International Journal of Phytoremediation. 2023;25(4):415–29. https://doi.org/10.1080/15226514.2022.2088688
  30. 30. Popko M, Wilk R, Gorecki H. New amino acid biostimulators based on protein hydrolysate of keratin. Przemysł Chemiczny. 2014;93(6):1012–5. http://dx.doi.org/10.3390/plants13020210
  31. 31. Navarro León E, López Moreno FJ, Borda E, Marín C, Sierras N, Blasco B, et al. Effect of l amino acid based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. Journal of the Science of Food and Agriculture. 2022;102(15):7098–106. https://doi.org/10.1002/jsfa.12071
  32. 32. Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA, et al. Bacterial plant biostimulants: a sustainable way towards improving growth, productivity and health of crops. Sustainability. 2021;13(5):2856. https://doi.org/10.3390/su13052856
  33. 33. Tiryaki D, Aydın İ, Atıcı Ö. Psychrotolerant bacteria isolated from the leaf apoplast of cold adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology. 2019;86:111–9. https://doi.org/10.1016/j.cryobiol.2018.11.001
  34. 34. Aamir M, Rai KK, Zehra A, Dubey MK, Kumar S, Shukla V, et al. Microbial bioformulation based plant biostimulants: a plausible approach toward next generation of sustainable agriculture. In: Microbial Endophytes. Woodhead Publishing; 2020. p. 195–225. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
  35. 35. Le Mire G, Nguyen M, Fassotte B, du Jardin P, Verheggen F, Delaplace P, et al. Implementing biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnologie, Agronomie, Société et Environnement. 2016.
  36. 36. Mishra J, Arora NK. Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations: For Sustainable Agriculture. 2016. p. 3–3. https://doi.org/10.1007/978-81-322-2779-3_1
  37. 37. Gómez E, Alonso A, Sánchez J, Muñoz P, Marín J, Mostaza Colado D, et al. Application of biostimulant in seeds and soil on three chickpea varieties: impacts on germination, vegetative development and bacterial facilitation of nitrogen and phosphorus. Life. 2024;14(1):148. https://doi.org/10.3390/life14010148
  38. 38. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23(4):762. https://doi.org/10.3390/molecules23040762
  39. 39. Yadav B, Jogawat A, Rahman MS, Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Reports. 2021;23:101040. https://doi.org/10.1016/j.genrep.2021.101040
  40. 40. Mrid RB, Benmrid B, Hafsa J, Boukcim H, Sobeh M, Yasri A, et al. Secondary metabolites as biostimulant and bioprotectant agents: a review. Science of the Total Environment. 2021;777:146204. https://doi.org/10.1016/j.scitotenv.2021.146204
  41. 41. Kalaivanan D, Ganeshamurthy AN. Mechanisms of heavy metal toxicity in plants. In: Abiotic Stress Physiology of Horticultural Crops. 2016. p. 85–102. https://doi.org/10.1007/978-81-322-2725-0_5
  42. 42. Cong W, Miao Y, Xu L, Zhang Y, Yuan C, Wang J, et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biology. 2019;19:1–4. https://doi.org/10.1186/s12870-019-1887-7
  43. 43. Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA. Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science. 2017;63(13):1889–99. https://doi.org/10.1080/03650340.2017.1313406
  44. 44. Mir BA, Khan TA, Fariduddin Q. 24 epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. Int J Adv Res. 2015;3(5):592–608. https://doi.org/10.1007/s12298-019-00672-6
  45. 45. Stasińska Jakubas M, Hawrylak Nowak B. Protective, biostimulating and eliciting effects of chitosan and its derivatives on crop plants. Molecules. 2022;27(9):2801. https://doi.org/10.3390/molecules27092801
  46. 46. Orzali L, Corsi B, Forni C, Riccioni L. Chitosan in agriculture: a new challenge for managing plant disease. In: Biological Activities and Application of Marine Polysaccharides. 2017. p. 17–36. http://dx.doi.org/10.5772/66840
  47. 47. Zeng D, Luo X, Tu R. Application of bioactive coatings based on chitosan for soybean seed protection. International Journal of Carbohydrate Chemistry. 2012;2012(1):104565. https://doi.org/10.1155/2012/104565
  48. 48. Stirk WA, Rengasamy KR, Kulkarni MG, van Staden J. Plant biostimulants from seaweed: an overview. In: The Chemical Biology of Plant Biostimulants. 2020. p. 31–55. https://doi.org/10.1002/9781119357254.ch2
  49. 49. Ali O, Ramsubhag A, Jayaraman J. Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production. Plants. 2021;10(3):531. https://doi.org/10.3390/plants10030531
  50. 50. Alzate Zuluaga MY, Miras Moreno B, Monterisi S, Rouphael Y, Colla G, Lucini L, et al. Integrated metabolomics and morpho biochemical analyses reveal a better performance of Azospirillum brasilense over plant derived biostimulants in counteracting salt stress in tomato. International Journal of Molecular Sciences. 2022;23(22):14216. https://doi.org/10.3390/ijms232214216
  51. 51. Banakar SN, PrasannaKumar MK, Mahesh HB, Parivallal PB, Puneeth ME, Gautam C, et al. Red seaweed biostimulants differentially alleviate the impact of fungicidal stress in rice (Oryza sativa L.). Scientific Reports. 2022;12:5993. https://doi.org/10.1038/s41598-022-10010-8
  52. 52. Deolu Ajayi AO, van der Meer IM, Van der Werf A, Karlova R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant, Cell & Environment. 2022;45(9):2537–53. https://doi.org/10.1111/pce.14391
  53. 53. Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance and disease management. Frontiers in Plant Science. 2019;10:462648. https://doi.org/10.3389/fpls.2019.00655
  54. 54. Orlov DS. Humic substances of soils and general theory of humification. Chemical Rubber Company Press; 2020. https://doi.org/10.1201/9781003079460
  55. 55. Ramadan KM, El Beltagi HS, El Mageed TA, Saudy HS, Al Otaibi HH, Mahmoud MA. The changes in various physio biochemical parameters and yield traits of faba bean due to humic acid plus 6 benzylaminopurine application under deficit irrigation. Agronomy. 2023;13(5):1227. https://doi.org/10.3390/agronomy13051227
  56. 56. Alsamadany H. Physiological, biochemical and molecular evaluation of mungbean genotypes for agronomical yield under drought and salinity stresses in the presence of humic acid. Saudi Journal of Biological Sciences. 2022;29(9):103385. https://doi.org/10.1016/j.sjbs.2022.103385
  57. 57. Rathor P, Gorim LY, Thilakarathna MS. Plant physiological and molecular responses triggered by humic based biostimulants–a way forward to sustainable agriculture. Plant and Soil. 2023;492(1):31–60. https://doi.org/10.1007/s11104-023-06156-7
  58. 58. De Castro TA, Berbara RL, Tavares OC, da Graca Mello DF, Pereira EG, de Souza CD, et al. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiology and Biochemistry. 2021;162:171–84. https://doi.org/10.1016/j.plaphy.2021.02.043
  59. 59. Pozdnyakov LA, Stepanov AL, Gasanov ME, Semenov MV, Yakimenko OS, Suada IK, et al. Effect of lignohumate on soil biological activity on the Bali Island, Indonesia. Eurasian Soil Science. 2020;53:653–60. https://doi.org/10.1134/S1064229320050117
  60. 60. Ampong K, Thilakaranthna MS, Gorim LY. Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy. 2022;4:848621. https://doi.org/10.3389/fagro.2022.848621
  61. 61. Gómez E, Alonso A, Sánchez J, Muñoz P, Marín J, Mostaza-Colado D, et al. Application of biostimulant in seeds and soil on three chickpea varieties: impacts on germination, vegetative development and bacterial facilitation of nitrogen and phosphorus. Life. 2024;14(1):148. https://doi.org/10.3390/life14010148
  62. 62. Refaay DA, El Marzoki EM, Abdel Hamid MI, Haroun SA. Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus and Arthrospira platensis as biostimulants for common bean. Journal of Applied Phycology. 2021;33:3807–15. https://doi.org/10.1007/s10811-021-02584-z
  63. 63. Desoky ES, Elrys AS, Mansour E, Eid RS, Selem E, Rady MM, et al. Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae. 2021;288:110340. https://doi.org/10.1016/j.scienta.2021.110340
  64. 64. Vishwanatha S, Shwetha BN, Koppalkar BG, Ashoka N, Ananda N, Umesh MR, et al. Response of black gram (Vigna mungo L.) and soybean (Glycine max L.) to novel bio stimulants in north eastern dry zone of Karnataka. Legume Research-An International Journal. 2022;45(9):1130–6. http://dx.doi.org/10.18805/LR-4858
  65. 65. Zulfiqar F, Moosa A, Ali HM, Bermejo NF, Munné Bosch S. Biostimulants: a sufficiently effective tool for sustainable agriculture in the era of climate change? Plant Physiology and Biochemistry. 2024;108699. https://doi.org/10.1016/j.plaphy.2024.108699
  66. 66. Amrane A, Mis S. Biostimulants effects on the germination of cowpea (Vigna unguiculata L.) under salt stress.
  67. 67. Baradhan G, et al. Effect of biostimulant foliar nutrition on the growth attributes of black gram (Vigna mungo L.). J Pharmacogn Phytochem. 2019;8(2):500–2. https://www.phytojournal.com/archives/2019/vol8issue2/PartI/8-1-346-683.pdf
  68. 68. El Sheikha AF, Allam AY, Taha M, Varzakas T. How does the addition of biostimulants affect the growth, yield and quality parameters of the snap bean (Phaseolus vulgaris L.)? How is this reflected in its nutritional value? Applied Sciences. 2022;12(2):776. https://doi.org/10.3390/app12020776
  69. 69. Kavipriya R, Dhanalakshmi PK, Jayashree S, Thangaraju N. Seaweed extract as a biostimulant for legume crop, green gram. Journal of Eco Biotechnology. 2011;3(8).
  70. 70. Kurakula RS, Rai PK. Effect of seaweed extracts on growth, yield parameters in chickpea (Cicer arietinum L.). Int J Plant Soil Sci. 2021;33(24):1–8. http://dx.doi.org/10.9734/ijpss/2021/v33i2430746
  71. 71. Dineshkumar R, Duraimurugan M, Sharmiladevi N, Lakshmi LP, Rasheeq AA, Arumugam A, et al. Microalgal liquid biofertilizer and biostimulant effect on green gram (Vigna radiata L.): an experimental cultivation. Biomass Conversion and Biorefinery. 2020;1–21. https://doi.org/10.1007/s13399-020-00857-0
  72. 72. Kamran A, Mushtaq M, Arif M, Rashid S. Role of biostimulants (ascorbic acid and fulvic acid) to synergize Rhizobium activity in pea (Pisum sativum L. var. Meteor). Plant Physiology and Biochemistry. 2023;196:668–82. https://doi.org/10.1016/j.plaphy.2023.02.018
  73. 73. Ajaykumar R, Harishankar K, Chandrasekaran P, Kumaresan P, Sivasabari K, Rajeshkumar P, et al. Physiological and biochemical characters of black gram as influenced by liquid Rhizobium with organic biostimulants. Legume Research-An International Journal. 2023;46(2):160–5.
  74. 74. Srivastav S, Dixit RN, Kumar P, Singh A. Effect of inorganic nutrients and bio-inoculants on yield, nutrient uptake and quality of black gram (Vigna mungo L.). Int J Curr Microbiol App Sci. 2018;7(7):882–9. https://doi.org/10.20546/ijcmas.2018.707.107
  75. 75. Mandaliya JV, Desai KD, Patel CR, Gondaliya BR, Solanki PP. Response of vegetable cowpea [Vigna unguiculata (L.) Walp.] to different biostimulants. Pharma Innov. 2022;11(4):216–21.
  76. 76. Ajaykumar R, Harishankar K, Sivasabari K, Rajeshkumar P, Saranraj T, Aravind J, et al. Effect of liquid Rhizobium with organic bio-stimulants on growth, yield attributes and yield of leguminous black gram [Vigna mungo (L.) Hepper]. Legume Research-An International Journal. 2022;45(12):1587–92. http://dx.doi.org/10.18805/LR-4999
  77. 77. Nazir MJ, Jatoi SA, Hussain I, Haq EU, Shoaib M. Foliar application of biostimulants on improving chickpea growth and productivity under drought conditions.
  78. 78. Priyadarshini VM, Madhanakumari P. Effect of biostimulants on the yield of bush bean (Lablab purpureus var. typicus). Ann Plant Soil Res. 2021;23(1):66–70. https://doi.org/10.47815/apsr.2021.10031
  79. 79. Gopalakrishnan S, Vadlamudi S, Samineni S, Sameer Kumar C. Plant growth promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springerplus. 2016;5:1.
  80. 80. Ahmad M, Adil Z, Hussain A, Mumtaz MZ, Nafees M, Ahmad I, et al. Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pakistan Journal of Agricultural Sciences. 2019;56(2). https://doi.org/10.21162/PAKJAS/19.7285
  81. 81. Paul JJ, Mahadevi B. Effect of seaweed liquid fertilizer of Caulerpa peltata Lamour (green seaweed) on Vigna radiata (L.) R. Wilczek in Idinthakarai, Tamil Nadu, India.
  82. 82. Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, et al. Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). European Journal of Soil Biology. 2011;47(1):35–43. https://doi.org/10.1016/j.ejsobi.2010.11.005
  83. 83. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth promoting rhizobacteria: context, mechanisms of action and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science. 2018;9:1473. https://doi.org/10.3389/fpls.2018.01473
  84. 84. Sharma D, Bochalya RS, Choudhary K, Kumar R, Chandel S, Thakur M. Effect of foliar application timing of different bio stimulants on growth, quality and nutrient uptake of chickpea (Cicer arietinum L.) in Mid Hills of Himachal Pradesh. https://doi.org/10.33545/2618060X.2024.v7.i8f.1282
  85. 85. SA I, OAM G, MG RS. Effect of foliar micronutrients under some biostimulants on the productivity of faba bean (Vicia faba L.). Fayoum Journal of Agricultural Research and Development. 2016;30(1):71–92. https://doi.org/10.1016/S0038-0717(03)00119-6
  86. 86. Imran QM, Falak N, Hussain A, Mun BG, Yun BW. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy. 2021;11(8):1579. https://doi.org/10.3390/agronomy11081579
  87. 87. Carillo P, Colla G, Fusco GM, Dell’Aversana E, El Nakhel C, Giordano M, et al. Morphological and physiological responses induced by protein hydrolysate based biostimulant and nitrogen rates in greenhouse spinach. Agronomy. 2019;9(8):450. https://doi.org/10.3390/agronomy9080450
  88. 88. Gedeon S, Ioannou A, Balestrini R, Fotopoulos V, Antoniou C. Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants. 2022;11(22):3082. https://doi.org/10.3390/plants11223082
  89. 89. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy. 2019;9(6):306. https://doi.org/10.3390/agronomy9060306
  90. 90. Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture. 2017;4:1–2. https://doi.org/10.1186/s40538-017-0089-5
  91. 91. Ma Y, Freitas H, Dias MC. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Frontiers in Plant Science. 2022;13:1024243. https://doi.org/10.3389/fpls.2022.1024243
  92. 92. Reddy KS, Wakchaure G, Khapte P, Changan S. Plant bio stimulants for mitigating abiotic stresses in agriculture. Indian J Fertil. 2023;19:788–800.
  93. 93. Hrytsaenko ZM, Tsygankova VA. Increase of plant resistance to diseases, pests and stresses with new biostimulants. In: World Congress on the Use of Biostimulants in Agriculture 1009. 2012. p. 225–33. https://doi.org/10.17660/ActaHortic.2013.1009.27
  94. 94. Roberti R, Bergonzoni F, Finestrelli A, Leonardi P. Biocontrol of Rhizoctonia solani disease and biostimulant effect by microbial products on bean plants. Italian Journal of Mycology. 2015;44:49–61. https://doi.org/10.6092/issn.2465-311X/5742
  95. 95. Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, et al. Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae. 2015;195:154–62. https://doi.org/10.1016/j.scienta.2015.09.015
  96. 96. Aydin A, Kant C, Turan M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research. 2012;7(7):1073–86. http://dx.doi.org/10.5897/AJAR10.274
  97. 97. Arshad M, Shaharoona B, Mahmood T. Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminates the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere. 2008;18(5):611–20. https://doi.org/10.1016/S1002-0160(08)60055-7
  98. 98. Cordovilla MD, Berrido SI, Ligero F, Lluch C. Rhizobium strain effects on the growth and nitrogen assimilation in Pisum sativum and Vicia faba plant growth under salt stress. Journal of Plant Physiology. 1999;154(1):127–31. https://doi.org/10.1016/S0176-1617(99)80328-9
  99. 99. Kumar G, Maharshi A, Patel J, Mukherjee A, Singh HB, Sarma BK. Trichoderma: a potential fungal antagonist to control plant diseases. SATSA Mukhapatra Annual Technical Issue. 2017;21:206–18.
  100. 100. Mordor Intelligence. India Biostimulants Market – Size & Share Analysis, Growth Trends & Forecast up to 2030 [Internet]. cited 2025 Apr 21.

Downloads

Download data is not yet available.