Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Optimizing Spinacia oleracea L. yield in semi-arid region: The role of hydrogel in water scarcity mitigation

DOI
https://doi.org/10.14719/pst.9337
Submitted
7 May 2025
Published
31-07-2025
Versions

Abstract

The study investigated how the combination of hydrogel (HG) and Phosphate-Solubilizing Bacteria (PSB) would improve soil health and enhance spinach (Spinacia oleracea L) yield under water-stress conditions. The study investigates the synergistic effects of PSB with hydrogel (PSB+HG) integration on enhancing soil water retention, nutrient availability, microbial biomass and crop productivity in semi-arid agroecosystems. Five amendments were checked: No addition of manures (control), Di-ammonium phosphate (DAP), DAP with hydrogel (DAP+HG), PSB and PSB with hydrogel (PSB+HG). Several physicochemical and biological analyses were conducted before and after harvest. The combination of PSB+HG has shown superior results compared to the other treatments; it has enhanced the Nitrogen with 242±14.52 kg/ha, water holding capacity with 79 % and microbial biomass carbon with 98±6.64 µg/g. Pearson correlation analysis further revealed a significant positive relationship between soil fertility parameters, specifically between nitrogen and water-holding capacity (r = 0.8021), nitrogen and microbial biomass carbon (r = 0.8028) and water-holding capacity and organic carbon (r = 0.8029). These correlations emphasize the synergistic effects of improved water retention and microbial activity on soil nutrient availability. The enhancement after harvest created a condition suitable for the improvement in the fertility of the soil, increasing the environment suitable for plant growth, leading to a better yield of the Spinach of 27.9±2.01g/m2. Our findings highlighted that effective incorporation of biological agents such as PSB with water-retaining material, such as hydrogel, improves the soil and plant growth, particularly in semi-arid regions where water is a main deficiency that hinders crop production.

References

  1. 1. Dinar A, Tieu A, Huynh H. Water scarcity impacts on global food production. Glob Food Sec. 2019;23:212 26. https://doi.org/10.1016/j.gfs.2019.07.007
  2. 2. Srivastav AL, Dhyani R, Ranjan M, Madhav S, Sillanpää M. Climate resilient strategies for sustainable management of water resources and agriculture. Environ Sci Pollut Res Int. 2021;28(31):41576 95. https://doi.org/10.1007/s11356-021-14332-4
  3. 3. Kaur P, Agrawal R, Pfeffer FM, Williams R, Bohidar HB. Hydrogels in agriculture: prospects and challenges. J Polym Environ. 2023;31(9):3701 18. https://doi.org/10.1007/s10924-023-02859-1
  4. 4. Oladosu Y, Rafii MY, Arolu F, Chukwu SC, Salisu MA, Fagbohun IK, et al. Superabsorbent polymer hydrogels for sustainable agriculture: a review. Horticulturae. 2022;8(7):605. https://doi.org/10.3390/horticulturae8070605
  5. 5. El Bergui O, Abouabdillah A, Bourioug M, Schmitz D, Biel M, Aboudrare A, et al. Innovative solutions for drought: evaluating hydrogel application on onion cultivation (Allium cepa) in Morocco. Water. 2023;15(11):1972. https://doi.org/10.3390/w15111972
  6. 6. Pedroza Sandoval A, Yáñez Chávez LG, Sánchez Cohen I, Samaniego Gaxiola JA, Trejo Calzada R. Hydrogel, biocompost and its effect on photosynthetic activity and production of forage maize plants (Zea mays L.). Acta Agron. 2017;66(1):63 8. https://doi.org/10.15446/acag.v66n1.50868
  7. 7. Rajanna GA, Manna S, Singh A, Babu S, Singh VK, Dass A, et al. Biopolymeric superabsorbent hydrogels enhance crop and water productivity of soybean–wheat system in Indo Gangetic plains of India. Sci Rep. 2022;12(1):11955. https://doi.org/10.1038/s41598-022-16049-x
  8. 8. Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P, et al. Environmentally friendly fertilizers: a review of materials used and their effects on the environment. Sci Total Environ. 2018;613:829 39. https://doi.org/10.1016/j.scitotenv.2017.09.186
  9. 9. Prakash S, Vasudevan S, Banerjee A, Joe AC, Geetha KN, Mani SK. Sustainable irrigation through application of hydrogel: a review. Alinteri J Agric Sci. 2021;36(2). https://doi.org/10.47059/alinteri/V36I2/AJAS21113
  10. 10. Saha A, Sekharan S, Manna U. Superabsorbent hydrogel (SAH) as a soil amendment for drought management: a review. Soil Tillage Res. 2020;204:104736. https://doi.org/10.1016/j.still.2020.104736
  11. 11. Adesemoye AO, Kloepper JW. Plant–microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol. 2009;85(1):1 12. https://doi.org/10.1007/s00253-009-2196-0
  12. 12. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A. On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate g poly (acrylic acid co acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res. 2014;21:1 15. https://doi.org/10.1007/s10965-013-0344-9
  13. 13. Rawat P, Das S, Shankhdhar D, Shankhdhar SC. Phosphate solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr. 2021;21(1):49 68. https://doi.org/10.1007/s42729-020-00342-7
  14. 14. Srinivasarao C, Kundu S, Rakesh S, Lakshmi CS, Kumar GR, Manasa R, et al. Managing soil organic matter under dryland farming systems for climate change adaptation and sustaining agriculture productivity. In: Soil Organic Carbon and Feeding the Future. CRC Press; 2021:219 51.
  15. 15. Kumar R, Yadav S, Singh V, Kumar M, Kumar M. Hydrogel and its effect on soil moisture status and plant growth: a review. J Pharmacogn Phytochem. 2020;9(3):1746 53.
  16. 16. Ghobashy MM. The application of natural polymer based hydrogels for agriculture. In: Hydrogels based on natural polymers. Elsevier; 2020:329 56. https://doi.org/10.1016/B978-0-12-816421-1.00013-6
  17. 17. Nascimento CDV, Simmons RW, de Andrade Feitosa JP, dos Santos Dias CT, Costa MCG. Potential of superabsorbent hydrogels to improve agriculture under abiotic stresses. J Arid Environ. 2021;189:104496. https://doi.org/10.1016/j.jaridenv.2021.104496
  18. 18. Skrzypczak D, Mikula K, Kossińska N, Widera B, Warchoł J, Moustakas K, et al. Biodegradable hydrogel materials for water storage in agriculture review of recent research. Desalin Water Treat. 2020;194:324 32. https://doi.org/10.5004/dwt.2020.25436
  19. 19. Mwendwa S. Revisiting soil texture analysis: practices towards a more accurate Bouyoucos method. Heliyon. 2022;8(5):e09395. https://doi.org/10.1016/j.heliyon.2022.e09395
  20. 20. Jabro JD, Mikha MM. Determination of infiltration rate and bulk density in soils. In: Soil health series: Volume 2 laboratory methods for soil health analysis. 202:69 77. https://doi.org/10.1002/9780891189831.ch5
  21. 21. Su SL, Singh DN, Baghini MS. A critical review of soil moisture measurement. Measurement. 2014;54:92 105. https://doi.org/10.1016/j.measurement.2014.04.007
  22. 22. Wang JJ, Provin T, Zhang H. Measurement of soil salinity and sodicity. In: Soil test methods from the southeastern United States. 2014:185.
  23. 23. Walkley AJ, Black IA. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934;37:29 38.
  24. 24. Nelson DW, Sommers LE. A rapid and accurate procedure for estimation of organic carbon in soils. Proc Indiana Acad Sci. 1974;84:456 62.
  25. 25. Abraham J. Organic carbon estimations in soils: analytical protocols and their implications. Rubber Sci. 2013;26(1):45 54.
  26. 26. Hafez M, Popov AI, Rashad M. Integrated use of bio organic fertilizers for enhancing soil fertility plant nutrition, germination status and initial growth of corn (Zea mays L.). Environ Technol Innov. 2021;21:101329. https://doi.org/10.1016/j.eti.2020.101329
  27. 27. Leno N, Sudharmaidevi CR. Physicochemical and nutrient release characteristics of a thermochemical organic fertilizer produced from degradable solid waste and its effect on productivity of banana. Commun Soil Sci Plant Anal. 2021;52(20):2562 77. https://doi.org/10.1080/00103624.2021.1953054
  28. 28. Madakka M, Jayaraju N, Shirisha J. An integrated analysis of sinkholes in Kadapa region andra Pradesh, India: implication to pedology. Microchem J. 2021;170:106588. https://doi.org/10.1016/j.microc.2021.106588
  29. 29. Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 1954;939:1 19.
  30. 30. Venter AE, Du Preez CC. Phosphorus extraction by selected methods in alkaline and calcareous soils after mono ammonium phosphate application at different rates. S Afr J Plant Soil. 2021;38(1):60 9. https://doi.org/10.1080/02571862.2020.1845828
  31. 31. Hartono A, Nadalia D, Sulaeman D. Development of quick test method for soil pH, nitrate, phosphorus and potassium combining chemicals and phone cellular application. AGRIVITA J Agric Sci. 2021;43(2):367 77.
  32. 32. Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17(6):837 42. https://doi.org/10.1016/0038-0717(85)90144-0
  33. 33. Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19(6):703 7. https://doi.org/10.1016/0038-0717(87)90052-6
  34. 34. Joergensen RG, Mueller T. The fumigation extraction method to estimate soil microbial biomass: calibration of the kEN value. Soil Biol Biochem. 1996;28(1):33 7. https://doi.org/10.1016/0038-0717(95)00102-6
  35. 35. Yang T, Siddique KHM, Liu K. Cropping systems in agriculture and their impact on soil health A review. Glob Ecol Conserv. 2020;23:e01118. https://doi.org/10.1016/j.gecco.2020.e01118
  36. 36. Ho TTT, Le TH, Tran CS, Nguyen PT, Thai VN, Bui XT. Compost to improve sustainable soil cultivation and crop productivity. Case Stud Chem Environ Eng. 2022;6:100211. https://doi.org/10.1016/j.cscee.2022.100211
  37. 37. Nugroho E, Zahra AM, Masithoh RE, Simatupang HK, Sinaga ANK, Pitaloka ND, et al. Determination of green and red spinach microgreen chlorophyll content using visible spectroscopy and wavelength selection. IOP Conf Ser Earth Environ Sci. 2023;1183(1):012049.
  38. 38. Sari EK. Penetapan kadar klorofil dan karotenoid daun sawi (Brassica) menggunakan metode spektrofotometri UV Vis. Fullerene J Chem. 2020;5(1):49 52.
  39. 39. Ahmed FK, Mostafa M, Abd Elsalam KA. Micro-/nanoscale biodegradable hydrogels: water purification, management, conservation and agrochemical delivery. In: Aquananotechnology. Elsevier; 2021:201 29. https://doi.org/10.1016/B978-0-12-821141-0.00002-1
  40. 40. Malik S, Chaudhary K, Malik A, Punia H, Sewhag M, Berkesia N, et al. Superabsorbent polymers as a soil amendment for increasing agriculture production with reducing water losses under water stress condition. Polymers. 2022;15(1):161. https://doi.org/10.3390/polym15010161
  41. 41. Patra SK, Poddar R, Brestic M, Acharjee PU, Bhattacharya P, Sengupta S, et al. Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. Int J Polym Sci. 2022;2022:4914836. https://doi.org/10.1155/2022/4914836
  42. 42. Verma S, Pradhan SS, Singh A, Kushuwaha M. Effect of Organic Manure on Different Soil Properties: A Review. Int J Plant Soil Sci. 2024;36(5):182 87. https://doi.org/10.9734/ijpss/2024/v36i54515
  43. 43. Buchmann C, Steinmetz Z, Brax M, Peth S, Schaumann GE. Effect of matric potential and soil water hydrogel interactions on biohydrogel induced soil microstructural stability. Geoderma. 2020;362:114142. https://doi.org/10.1016/j.geoderma.2019.114142
  44. 44. Zhang L, Guan Y. Microbial investigations of new hydrogel biochar composites as soil amendments for simultaneous nitrogen use improvement and heavy metal immobilization. J Hazard Mater. 2022;424:127154. https://doi.org/10.1016/j.jhazmat.2021.127154
  45. 45. Arif MS, Shahzad SM, Yasmeen T, Riaz M, Ashraf M, Ashraf MA, et al. Improving plant phosphorus (P) acquisition by phosphate solubilizing bacteria. Essential plant nutrients: uptake, use efficiency and management. 2017;513 56. https://doi.org/10.1007/978-3-319-58841-4_21
  46. 46. Srivastav AL, Dhyani R, Ranjan M, Madhav S, Sillanpää M. Climate-resilient strategies for sustainable management of water resources and agriculture. Environ Sci Pollut Res. 2021;28(31):41576-95. https://doi.org/10.1007/s11356-021-14332-4
  47. 47. El Assimi T, Lakbita O, El Meziane A, Khouloud M, Dahchour A, Beniazza R, et al. Sustainable coating material based on chitosan clay composite and paraffin wax for slow release DAP fertilizer. Int J Biol Macromol. 2020;161:492 502. https://doi.org/10.1016/j.ijbiomac.2020.06.074
  48. 48. Oksińska MP, Magnucka EG, Lejcuś K, Pietr SJ. Biodegradation of the cross linked copolymer of acrylamide and potassium acrylate by soil bacteria. Environ Sci Pollut Res Int. 2016;23:5969 77. https://doi.org/10.1007/s11356-016-6130-6
  49. 49. Sivaram AK, Abinandan S, Chen C, Venkateswartlu K, Megharaj M. Microbial inoculant carriers: Soil health improvement and moisture retention in sustainable agriculture. Adv Agron. 2023;180:35 91. https://doi.org/10.1016/bs.agron.2023.03.001
  50. 50. Naz M, Dai Z, Hussain S, Tariq M, Danish S, Khan IU, et al. The soil pH and heavy metals revealed their impact on soil microbial community. J Environ Manage. 2022;321:115770. https://doi.org/10.1016/j.jenvman.2022.115770
  51. 51. Vyavahare GD, Lee Y, Seok YJ, Kim HN, Sung J, Park JH. Monitoring of soil nutrient levels by an EC sensor during spring onion (Allium fistulosum) cultivation under different fertilizer treatments. Agronomy. 2023;13(8):2156. https://doi.org/10.3390/agronomy13082156
  52. 52. Abdelhak M. Soil improvement in arid and semiarid regions for sustainable development. In: Natural resources conservation and advances for sustainability. Elsevier; 2022:73 90. https://doi.org/10.1016/B978-0-12-822976-7.00026-0
  53. 53. Lizcano Toledo R, Reyes Martín MP, Celi L, Fernández Ondóño E. Phosphorus dynamics in the soil–plant–environment relationship in cropping systems: a review. Appl Sci. 2021;11(23):11133. https://doi.org/10.3390/app112311133
  54. 54. Paravar A, Piri R, Balouchi H, Ma Y. Microbial seed coating: an attractive tool for sustainable agriculture. Biotechnol Rep. 2023;37:e00781. https://doi.org/10.1016/j.btre.2023.e00781
  55. 55. Meddich A, Oufdou K, Boutasknit A, Raklami A, Tahiri A, Ben Laouane R, et al. Use of organic and biological fertilizers as strategies to improve crop biomass, yields and physicochemical parameters of soil. In: Nutrient dynamics for sustainable crop production. Springer; 2020:247 88. https://doi.org/10.1007/978-981-13-8660-2_9
  56. 56. Wu F, Li J, Chen Y, Zhang L, Zhang Y, Wang S, et al. Effects of phosphate solubilizing bacteria on the growth, photosynthesis and nutrient uptake of Camellia oleifera Abel. Forests. 2019;10(4):348. https://doi.org/10.3390/f10040348

Downloads

Download data is not yet available.