Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Antioxidant and antiglycation application of Ferula asafoetida resin and Eucalyptus globulus oil: A mechanism-based insight on diabetic research

DOI
https://doi.org/10.14719/pst.9340
Submitted
7 May 2025
Published
10-10-2025 — Updated on 20-10-2025
Versions

Abstract

The increasing dominance of diabetes and its complications has leads to search for natural antidiabetic and antiglycating compounds to control the harmful complications of advanced glycation end-products (AGEs). Natural products offer various therapeutic potentials over synthetic inhibitors, such as low toxicity and diverse biological activities. Ferula asafoetida Linn resin and Eucalyptus globulus Labill leaf oil were chosen based on traditional medical knowledge and scientific data demonstrating their bioactive components and pharmacological value in associated therapeutic applications. This study evaluates the therapeutic potential of F. asafoetida resin and E. globulus leaf oil as antiglycating co-relating phytochemical, antioxidant and antiglycation tests. The oleo-gum resin of F. asafoetida was extracted with distilled water using Soxhlet extraction, whereas E. globulus leaf oil was diluted using methanol in 1:10 ratio for analysis. The total phenolic and flavonoid contents was evaluated using Folin-Ciocalteu and aluminium chloride assays respectively and further GC-MS is used for phytochemical identification. The antioxidant activity was determined using (2,2-diphenyl-1-picrylhydrazyl) DPPH, (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ABTS, nitric oxide scavenging tests and Ferri Reducing Antioxidant Power (FRAP). The antiglycation potential was determined by measuring fructosamine, protein carbonyl concentration, protein aggregation and AGEs formation. E. globulus oil exhibited higher phenolic and flavonoid content and antioxidant activity (p < 0.05), while F. asafoetida resin extract inhibited glycation intermediates and AGEs (p < 0.05). These findings point to their potential use in natural therapeutic formulations for diabetes-related oxidative and glycaemic stress.

References

  1. 1. Sen T, Samanta SK. Medicinal plants, human health and biodiversity: a broad review. Adv Biochem Eng Biotechnol. 2014;59-110. https://doi.org/10.1007/10_2014_273
  2. 2. Ali A. Herbs that heal: the philanthropic behaviour of nature. Ann Phytomed. 2020;9(1):7-17. https://doi.org/10.21276/ap.2020.9.1.2
  3. 3. Prance G. Endangered plants of the USA endangered and threatened plants of the United States Edward S. Ayensu Robert A. DeFilipps. Bioscience. 1978;28(9):598. https://doi.org/10.2307/1307523
  4. 4. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(1):69-75. https://doi.org/10.1289/ehp.01109s169
  5. 5. Singh G. Insilico screening and pharmacokinetic properties of phytoconstituents from Ferula asafoetida H.Karst. (Heeng) as potential inhibitors of α-amylase and α-glucosidase for type 2 diabetes mellitus. J Diabetes Metab Disord. 2022;21(2):1339-47. https://doi.org/10.1007/s40200-022-01064-6
  6. 6. Iranshahy M, Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin): a review. J Ethnopharmacol. 2011;134(1):1-10. https://doi.org/10.1016/j.jep.2010.11.067
  7. 7. Khan J, Kumar D, Ali A. Molecular insight into the antiglycating and antiaggregating potential of ferulic acid with BSA. Monatsh Chem. 2022;153(12):1277-85. https://doi.org/10.1007/s00706-022-02983-z
  8. 8. Čmiková N, Galovičová L, Schwarzová M, Vukic MD, Vukovic NL, Kowalczewski PŁ, et al. Chemical composition and biological activities of Eucalyptus globulus essential oil. Plants. 2023;12(5):1076-94. https://doi.org/10.3390/plants12051076
  9. 9. Mahdavifard S, Nakhjavani M. 1,8 cineole protects type 2 diabetic rats against diabetic nephropathy via inducing the activity of glyoxalase-I and lowering the level of transforming growth factor-1β. J Diabetes Metab Disord. 2022;21(1):567-72. https://doi.org/10.1007/s40200-022-01014-2
  10. 10. Bamne F, Shaikh N, Momin M, Khan T, Ali A. Phytochemical analysis, antioxidant and DNA nicking protection assay of some selected medicinal plants. Ann Phytomed. 2023;12(2):406-13. https://doi.org/10.54085/ap.2023.12.2.50
  11. 11. Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud. 2020;8(2):603-8. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
  12. 12. Rao A, Kumari S, Laura JS, Dhania G. Qualitative phytochemical screening of medicinal plants using different solvent extracts. Orient J Chem. 2023;39(3):621-6. https://doi.org/10.13005/ojc/390312
  13. 13. Godlewska K, Pacyga P, Michalak I, Biesiada A, Szumny A, Pachura N, et al. Effect of botanical extracts on the growth and nutritional quality of field-grown white head cabbage (Brassica oleracea var. capitata). Molecules. 2021;26(7):1992-2025. https://doi.org/10.3390/molecules26071992
  14. 14. Balyan P, Ola MS, Alhomida AS, Ali A. D-ribose-induced glycation and its attenuation by the aqueous extract of Nigella sativa seeds. Medicina. 2022;58(12):1816-35. https://doi.org/10.3390/medicina58121816
  15. 15. Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA, et al. Assessment of total phenolic and flavonoid content, antioxidant properties and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement Alternat Med. 2014;1-9. https://doi.org/10.1155/2014/253875
  16. 16. Ali A, Shahu R, Balyan P, Kumari S, Ghodmare R, Jobby R, et al. Antioxidation and antiglycation properties of a natural sweetener: Stevia rebaudiana. Sugar Tech. 2021;24(2):563-75. https://doi.org/10.1007/s12355-021-01023-0
  17. 17. Kaur A, Shukla A, Shukla RK. Comparative evaluation of ABTS, DPPH, FRAP, nitric oxide assays for antioxidant potential, phenolic and flavonoid content of Ehretia acuminata R. Br. bark. Int Res J Pharm. 2019;9(12):100-4. https://doi.org/10.7897/2230-8407.0912301
  18. 18. Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412-22. https://doi.org/10.1007/s13197-011-0251-1
  19. 19. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326-45. https://doi.org/10.3390/molecules27041326
  20. 20. Gulcin İ, Alwasel SH. DPPH radical scavenging assay. Processes. 2023;11(8):2248-68. https://doi.org/10.3390/pr11082248
  21. 21. Baliga MS, Jagetia GC, Rao SK, S KB. Evaluation of nitric oxide scavenging activity of certain spices in vitro: a preliminary study. Nahrung. 2003;47(4):261-4. https://doi.org/10.1002/food.200390061
  22. 22. Shahinuzzaman M, Yaakob Z, Anuar FH, Akhtar P, Kadir NHA, Hasan AKM, et al. In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci Rep. 2020;10(1):10852-66. https://doi.org/10.1038/s41598-020-67765-1
  23. 23. Safari MR, Azizi O, Heidary SS, Kheiripour N, Ravan AP. Antiglycation and antioxidant activity of four Iranian medical plant extracts. J Pharmacopunct. 2018;21(2):82-9. https://doi.org/10.3831/KPI.2018.21.010
  24. 24. Niazmand R, Razavizadeh BM. Ferula asafoetida: chemical composition, thermal behavior, antioxidant and antimicrobial activities of leaf and gum hydroalcoholic extracts. J Food Sci Technol. 2020;58(6):2148-59. https://doi.org/10.1007/s13197-020-04724-8
  25. 25. Ghasemi Z, Rezaee R, Aslani MR, Boskabady MH. Anti-inflammatory, antioxidant and immunomodulatory activities of the genus Ferula and their constituents: a review. Iran J Basic Med Sci. 2021;24(12):1613-23. https://doi.org/10.22038/IJBMS.2021.59473.13204
  26. 26. Benlabchir AA, Fikri-Benbrahim K, Moutawalli A, Alanazi MM, Halmoune A, Benkhouili FZ, et al. GC–MS characterization and bioactivity study of Eucalyptus globulus (Myrtaceae) essential oils and their fractions: antibacterial and antioxidant properties and molecular docking modeling. Pharmaceuticals. 2024;17(11):1552-73. https://doi.org/10.3390/ph17111552
  27. 27. Park JY, Kim JY, Son YG, Kang SD, Lee SW, Kim KD, et al. Characterization of chemical composition and antioxidant activity of Eucalyptus globulus leaves under different extraction conditions. Appl Sci. 2023;13(17):9984. https://doi.org/10.3390/app13179984
  28. 28. Pinto M, Soares C, Pereira R, Rodrigues JA, Fidalgo F, Valente IM. Untargeted metabolomic profiling of fresh and dried leaf extracts of young and mature Eucalyptus globulus trees indicates differences in the presence of specialized metabolites. Front Plant Sci. 2022;13:986197. https://doi.org/10.3389/fpls.2022.986197
  29. 29. Amin A, Tuenter E, Cos P, Maes L, Exarchou V, Apers S, et al. Antiprotozoal and antiglycation activities of sesquiterpene coumarins from Ferula narthex exudate. Molecules. 2016;21(10):1287. https://doi.org/10.3390/molecules21101287
  30. 30. Nazari ZE, Iranshahi M. Biologically active sesquiterpene coumarins from Ferula species. Phytother Res. 2011;25(3):315-23. https://doi.org/10.1002/ptr.3311
  31. 31. Hamad M, Nassar N, Hanania M, Al-Rimawi F. Study of the polyphenolic constituents, in vitro anti-glycation, antioxidant and antibacterial activities of Eucalyptus globulus leaves extracts. J Herbs Spices Med Plants. 2024;30(3):292-308. https://doi.org/10.1080/10496475.2024.2355648
  32. 32. Nile SH, Keum YS. Chemical composition, antioxidant, anti-inflammatory and antitumor activities of Eucalyptus globulus Labill. Indian J Exp Biol. 2018;56(10):734-42.
  33. 33. Wang P, Chen H, Sang S. Trapping methylglyoxal by genistein and its metabolites in mice. Chem Res Toxicol. 2016;29(3):406-14. https://doi.org/10.1021/acs.chemrestox.5b00516
  34. 34. Yeh W, Hsia S, Lee W, Wu C. Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal. 2017;25(1):84-92. https://doi.org/10.1016/j.jfda.2016.10.017
  35. 35. Meeprom A, Sompong W, Chan CB, Adisakwattana S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules. 2013;18(6):6439-54. https://doi.org/10.3390/molecules18066439
  36. 36. Maisto M, Tenore GC. Polyphenols as a useful tool to ameliorate advanced glycation end-product formation: a focus on molecular mechanisms of action. Front Biosci (Landmark Ed). 2024;29(12):424. https://doi.org/10.31083/j.fbl2912424
  37. 37. Bavkar LN, Patil RS, Rooge SB, Nalawade ML, Arvindekar AU. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor. Mol Cell Biochem. 2019;459(1-2):61-71. https://doi.org/10.1007/s11010-019-03550-7

Downloads

Download data is not yet available.