Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Breeding and biotechnological strategies for enhancing sucking pest tolerance in cotton: Current perspectives and future prospects

DOI
https://doi.org/10.14719/pst.9365
Submitted
8 May 2025
Published
21-11-2025

Abstract

Cotton is often hailed as the "white gold" of agriculture due to its unparalleled contribution to the global textile industry, economic sustainability and rural livelihoods. Cotton possesses natural fibre of high-quality. It supports millions of farmers worldwide and serves as a vital raw material for many industries. However, cotton production is severely threatened by pest attacks. Sucking pests such as aphids (Aphis gossypii), whiteflies (Bemisia tabaci), thrips (Thrips tabaci) and jassids (Amrasca biguttula biguttula) affect cotton productivity to a significant extent. These pests not only cause direct damage to the crop by feeding on plant sap but also act as vectors of viral diseases, leading to substantial yield and fibre quality losses. Conventional pest management practices depend on chemical pesticides, which pose environmental risks, increase production costs and lead to pesticide resistance. Breeding for sucking pest tolerance is a sustainable alternative that enhances crop resilience while reducing dependence on chemical control measures. Exploring the genetic basis of sucking pest resistance in cotton, emphasizing key Quantitative Trait Loci (QTLs), resistant genotypes and physiological and morphological defense mechanisms such as trichome density, leaf toughness and secondary metabolites are prerequisite for creating sucking pest tolerance.  KC2 and JR 23 are found to be promising jassid resistant varieties developed through conventional breeding in cotton. Advances in molecular breeding, Marker-Assisted Selection (MAS) and genomic tools have enabled more precise identification and incorporation of resistance traits into elite cultivars. Additionally, transgenic and gene-editing approaches have also proven useful in developing pest tolerant varieties retaining the fibre quality and yield. Breeding strategies along with genomic selection, multi-environment testing and biotechnological innovations can be used to develop sucking pest-tolerant cotton varieties suited to diverse agro-climatic conditions. This review highlights the different strategies crucial for improving sucking pest resistance in cotton.

References

  1. 1. Simair AA, Simair SP. Status and recent progress in determining the genetic diversity and phylogeny of cotton crops. In: Patil NB, editor. Cotton science and processing technology: Gene, ginning, garment and green recycling. Singapore: Springer; 2020. p. 15-37 https://doi.org/10.1007/978-981-15-9169-3_2
  2. 2. Rojo-Gutiérrez E, Buenrostro-Figueroa J, López-Martínez L, Sepúlveda D, Baeza-Jiménez R. Biotechnological potential of cottonseed, a by-product of cotton production. In: Bhaskar T, Pandey A, Mohan SV, Lee DJ, Khanal SK, editors. Valorisation of agro-industrial residues. Vol II: Non-biological approaches. Cham: Springer; 2020. p. 63-82 https://doi.org/10.1007/978-3-030-39208-6_3
  3. 3. Razzaq A, Zafar MM, Ali A, Li P, Qadir F, Zahra LT, et al. Biotechnology and solutions: insect-pest-resistance management for improvement and development of Bt cotton (Gossypium hirsutum L.). Plants. 2023;12(23):4071. https://doi.org/10.3390/plants12234071
  4. 4. Shera P, Kumar V, Jindal V. Sucking pests of cotton. In: Arora R, editor. Sucking pests of crops. Singapore: Springer; 2020. p. 249-84 https://doi.org/10.1007/978-981-15-6149-8_8
  5. 5. Chohan SM, Sohail MS, Sharif I. Sustainable pest management strategies for cotton crop in Pakistan: a review. J Agric Res. 2024;62(3):181-92.
  6. 6. Rauf S, Shehzad M, Al-Khayri JM, Imran HM, Noorka IR. Cotton (Gossypium hirsutum L.) breeding strategies. In: Al-Khayri JM, Jain SM, Johnson DV, editors. Advances in plant breeding strategies: Industrial and food crops. Cham: Springer; 2019. p. 29-59. https://doi.org/10.1007/978-3-030-23265-8_2
  7. 7. Mitchell C, Brennan RM, Graham J, Karley AJ. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci. 2016;7:1132. https://doi.org/10.3389/fpls.2016.01132
  8. 8. da Silva PVdC, Junior CB, Goncalves de Jesus F, Hoffmann LV, Pinto de Menezes IP. Antixenosis in cotton genotypes (Gossypium hirsutum var. marie galante) to Spodoptera frugiperda (Lepidoptera: Noctuidae) mediated by trichome and gossypol densities. Aust J Crop Sci. 2021;15(12):1435-41. https://doi.org/10.21475/ajcs.21.15.12.p3310
  9. 9. Robinson S, Wolfenbarger D, Dilday R. Antixenosis of smooth leaf cotton to the ovipositional response of tobacco budworm. Crop Sci. 1980;20(5):646-9. https://doi.org/10.2135/cropsci1980.0011183X002000050026x
  10. 10. Parrott W, Jenkins N, McCarthy J Jr, Lambert L. A procedure to evaluate antibiosis in cotton to the tobacco budworm. J Econ Entomol. 1978;71(2):310-2. https://doi.org/10.1093/jee/71.2.310
  11. 11. Singh V, Mandhania S, Pal A, Kaur T, Banakar P, Sankaranarayanan K, et al. Morpho-physiological and biochemical responses of cotton (Gossypium hirsutum L.) genotypes upon sucking insect-pest infestations. Physiol Mol Biol Plants. 2022;28(11):2023-39. https://doi.org/10.1007/s12298-022-01253-w
  12. 12. Aherkar SS, Deshmukh SB, Konde NM, Paslawar AN, Joshi T, Messmer MM, et al. Studies on morphophysiological and biochemical parameters for sucking pest tolerance in organic cotton. Agriculture. 2023;13(7):1402. https://doi.org/10.3390/agriculture13071402
  13. 13. Sarker U. Variability, heritability, character association and path coefficient analysis in advanced breeding lines of rice (Oryza sativa L.). Genetika. 2020;52(2):711-26. https://doi.org/10.2298/GENSR2002711H
  14. 14. Din SU, Azam S, Rao AQ, Shad M, Ahmed M, Gul A, et al. Development of broad-spectrum and sustainable resistance in cotton against major insects through combination of Bt and plant lectin genes. Plant Cell Rep. 2021;40:707-21. https://doi.org/10.1007/s00299-021-02669-6
  15. 15. Dhamayanthi K, Rameash K, Manivannan A, Sheeba A, Abirami S. Studies on leaf hairiness and sucking pest resistance in Egyptian cotton (Gossypium barbadense L.). J Cotton Res Dev. 2020;34(2):204-8.
  16. 16. Sarwar M, Hamed M, Yousaf M, Hussain M. Identification of resistance to insect pest infestations in cotton (Gossypium hirsutum L.) varieties evaluated in field experiments. Int J Sci Res Environ Sci. 2013;1(11):317-23. https://doi.org/10.12983/ijsres-2013-p317-323
  17. 17. Rajashekhar M, Katageri I, Khadi B. In vivo interspecific cross recovery among different cotton (Gossypium spp.). Indian J Genet Plant Breed. 2005;65(1):23-8.
  18. 18. Knight RL. The genetics of jassid resistance in cotton: I. The genes H1 and H2. J Genet. 1952;51:47-66. https://doi.org/10.1007/BF02986704
  19. 19. Miyazaki J, Stiller WN, Wilson LJ. Sources of plant resistance to thrips: a potential core component in cotton IPM. Entomol Exp Appl. 2017;162(1):30-40. https://doi.org/10.1111/eea.12501
  20. 20. Ismail SM. Gossypol as a natural insecticide in cotton plants against cotton thrips and pink bollworm. Prog Chem Biochem Res. 2021;4:68-79.
  21. 21. Rizwan M, Abro S, Asif MU, Hameed A, Mahboob W, Deho ZA, et al. Evaluation of cotton germplasm for morphological and biochemical host plant resistance traits against sucking insect pest complex. J Cotton Res. 2021;4(1):1-8. https://doi.org/10.1186/s42397-021-00093-5
  22. 22. Perveen SS, Qaisrani T, Siddiqui F, Perveen R, Naqvi S. Cotton plant volatiles and insect behavior. Pak J Biol Sci. 2001;4(5):554-8. https://doi.org/10.3923/pjbs.2001.554.558
  23. 23. Farhan M, Pan J, Hussain H, Zhao J, Yang H, Ahmad I, et al. Aphid-resistant plant secondary metabolites: types, insecticidal mechanisms and prospects for utilization. Plants. 2024;13(16):2332. https://doi.org/10.3390/plants13162332
  24. 24. Vonzun S, Messmer MM, Boller T, Shrivas Y, Patil SS, Riar A. Extent of bollworm and sucking pest damage on modern and traditional cotton species and potential for breeding in organic cotton. Sustainability. 2019;11(22):6353. https://doi.org/10.3390/su11226353
  25. 25. Jindal V, Arora R, Kumar R. Screening of cotton genotypes for resistance to sucking pests. Ann Plant Prot Sci. 2007;15(1):26-9.
  26. 26. Shrestha N, Bertone M, Bowman DT, Kuraparthy V. Breeding, genetics and genomics of cotton. In: Cotton breeding and biotechnology. Cham: Springer; 2021. p. 89-112
  27. 27. Jindal S, Pathak D, Pandher S, Rathore P, Vikal Y. Inheritance and molecular tagging of genes introgressed from Gossypium arboreum to G. hirsutum for leafhopper tolerance. J Genet. 2022;101(2):42. https://doi.org/10.1007/s12041-022-01379-6
  28. 28. Ahmed H, Nazir MF, Pan Z, Gong W, Iqbal MS, He S, et al. Genotyping by sequencing revealed QTL hotspots for trichome-based plant defense in Gossypium hirsutum. Genes. 2020;11(4):368. https://doi.org/10.3390/genes11040368
  29. 29. An Q, Pan Z, Aini N, Han P, Wu Y, You C, et al. Identification of candidate genes for aphid resistance in upland cotton by QTL mapping and expression analysis. Crop J. 2023;11(5):1600-4. https://doi.org/10.1016/j.cj.2023.03.006
  30. 30. Yang J, Zhang H, Chen H, Sun Z, Ke H, Wang G, et al. Genome-wide association study reveals novel SNPs and genes in Gossypium hirsutum underlying Aphis gossypii resistance. Theor Appl Genet. 2023;136(8):171. https://doi.org/10.1007/s00122-023-04415-w
  31. 31. Zhang B, Rahman MU. Targeted breeding in cotton using CRISPR/Cas9 genome editing. In: Zhang B, editor. Cotton precision breeding. Cham: Springer; 2021. p. 313-27 https://doi.org/10.1007/978-3-030-64504-5_14
  32. 32. Sattar MN, Javed M, Hussain SB, Babar M, Chee PW, Iqbal Z, et al. Mapping of quantitative trait loci controlling cotton leaf curl disease resistance in upland cotton. Plant Breed. 2023;142(2):247-57. https://doi.org/10.1111/pbr.13084
  33. 33. Abdelraheem A, Kuraparthy V, Hinze L, Stelly D, Wedegaertner T, Zhang J. Genome-wide association study for tolerance to drought and salt and resistance to thrips at the seedling growth stage in US upland cotton. Ind Crops Prod. 2021;169:113645. https://doi.org/10.1016/j.indcrop.2021.113645
  34. 34. Khabbazi SD, Khabbazi AD, Özcan SF, Bakhsh A, Başalma D, Özcan S. Expression of GNA and biting site-restricted Cry1Ac in cotton: an efficient attribution to insect pest management strategies. Plant Biotechnol Rep. 2018;12:273-82. https://doi.org/10.1007/s11816-018-0493-8
  35. 35. Liu Y, Gong C, Hu Y, Han H, Tian T, Luo Y, et al. Silencing of the plant-derived horizontally transferred gene BtSC5DL effectively controls Bemisia tabaci MED. Pest Manag Sci. 2023;79(5):1863-72.
  36. 36. He P, Jia H, Xue H, Zeng Y, Tian L, Hu X, et al. Expression of modified snowdrop lectin (Galanthus nivalis agglutinin) protein confers aphid and Plutella xylostella resistance in Arabidopsis and cotton. Genes. 2022;13(7):1169. https://doi.org/10.3390/genes13071169
  37. 37. Wang ZZ, Shi M, Ye XQ, Chen MY, Chen XX. Identification, characterization and expression of a defensin-like antifungal peptide from the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Insect Mol Biol. 2013;22(3):297-305. https://doi.org/10.1111/imb.12021
  38. 38. Rebijith K, Asokan R, Ranjitha H, Rajendra Prasad B, Krishna V, Krishna Kumar N. Diet-delivered dsRNAs for juvenile hormone-binding protein and vacuolar ATPase-H implied their potential in the management of the melon aphid (Hemiptera: Aphididae). Environ Entomol. 2016;45(1):268-75. https://doi.org/10.1093/ee/nvv178
  39. 39. Tamilselvan R, Mahalingam C, Mohankumar S, Senguttuvan K. Characterization of resistance mechanisms to the whitefly, Bemisia tabaci Asia-II-8 (Hemiptera: Aleyrodidae) in cotton genotypes. Int J Trop Insect Sci. 2021;41(1):373-81. https://doi.org/10.1007/s42690-020-00215-7
  40. 40. Ryan C. Proteinase inhibitors. In: Conn EE, Stumpf PK, editors. Proteins and nucleic acids. New York: Academic Press; 1981. p. 351-70 https://doi.org/10.1016/B978-0-12-675406-3.50015-3
  41. 41. Graham SH, Stewart SD. Field study investigating Cry51Aa2.834_16 in cotton for control of thrips (Thysanoptera: Thripidae) and tarnished plant bugs (Hemiptera: Miridae). J Econ Entomol. 2018;111(6):2717-26. https://doi.org/10.1093/jee/toy250
  42. 42. Akbar W, Gowda A, Ahrens JE, Stelzer JW, Brown RS, Bollman SL, et al. First transgenic trait for control of plant bugs and thrips in cotton. Pest Manag Sci. 2019;75(3):867-77. https://doi.org/10.1002/ps.5234
  43. 43. Ali A, Akhtar MN, Awan MQ, Ali A, Farooq A. Behavioural response of cotton (Gossypium hirsutum) against the infestation of different sucking insect pests in Southern Punjab, Pakistan. Pure Appl Biol. 2020;10(1):124-31. https://doi.org/10.19045/bspab.2021.100014
  44. 44. Sridhar V, Reddy PS, Reddy SS, Satihal MB, Prasad MS, Kumar VR, et al. Development and validation of molecular markers for sucking pest resistance in cotton. Can J Biotechnol. 2017;1(Special):288. https://doi.org/10.24870/cjb.2017-a272
  45. 45. Ullah F, Gul H, Wang X, Ding Q, Said F, Gao X, et al. RNAi-mediated knockdown of chitin synthase 1 (CHS1) gene causes mortality and decreased longevity and fecundity in Aphis gossypii. Insects. 2019;11(1):22. https://doi.org/10.3390/insects11010022
  46. 46. Malik HJ, Raza A, Amin I, Scheffler JA, Scheffler BE, Brown JK, et al. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Sci Rep. 2016;6(1):38469. https://doi.org/10.1038/srep38469
  47. 47. Omar MA, Ao Y, Li M, He K, Xu L, Tong H, et al. Functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. Insect Mol Biol. 2019;28(4):550-67. https://doi.org/10.1111/imb.12572
  48. 48. Rakesh V, Singh A, Ghosh A. Suppression of Thrips palmi population by spray-on application of dsRNA targeting V-ATPase-B. Int J Biol Macromol. 2024;280:135576. https://doi.org/10.1016/j.ijbiomac.2024.135576
  49. 49. Xu Q-Q, Shang F, Feng S-Y, Xie Q-P, Zhang W, Wang Z-G, et al. Design of fusion double-strand RNAs to control two global sap-sucking pests. Pestic Biochem Physiol. 2024;205:106114. https://doi.org/10.1016/j.pestbp.2024.106114
  50. 50. Broekgaarden C, Bucher J, Bac-Molenaar J, Keurentjes JJ, Kruijer W, Voorrips RE, et al. Novel genes affecting the interaction between the cabbage whitefly and Arabidopsis uncovered by genome-wide association mapping. PLoS One. 2015;10(12):e0145124. https://doi.org/10.1371/journal.pone.0145124
  51. 51. Samanya L. Genetic analysis of resistance to African cassava whitefly, Bemisia tabaci, in crosses of Latin American by Ugandan cassava parental lines. Master of Science [thesis]. Kampala: Makerere University; 2024
  52. 52. Amjad M, Cheema HMN, Ahmad JN, Noor K, Alvi HA, Ahmad H, et al. Evaluation of resistance and susceptibility level of single and double gene Bt cotton against armyworm and American bollworm. Int J Appl Exp Biol. 2024;3(1):83-91. https://doi.org/10.56612/ijaaeb.v3i1.69
  53. 53. Liu Z, Zhu Z, Zhang T. Development of transgenic CryIA(c)+GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover. In: Zhang BH, editor. Transgenic cotton: methods and protocols. New York: Springer; 2012. p.199-210 https://doi.org/10.1007/978-1-62703-212-4_17
  54. 54. Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, et al. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep. 1995;14:758-62. https://doi.org/10.1007/BF00232917
  55. 55. Martin C. Structure, function and regulation of the chalcone synthase. Int Rev Cytol. 1993;147:233-84. https://doi.org/10.1016/S0074-7696(08)60770-6
  56. 56. Dao T, Linthorst H, Verpoorte R. Chalcone synthase and its functions in plant resistance. Phytochem Rev. 2011;10:397-412. https://doi.org/10.1007/s11101-011-9211-7
  57. 57. Dixit G, Srivastava A, Rai KM, Dubey RS, Srivastava R, Verma PC. Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton varieties toward chewing pests. Plant Signal Behav. 2020;15(5):1747689. https://doi.org/10.1080/15592324.2020.1747689
  58. 58. Zhang L, Wen X, Chen X, Zhou Y, Wang K, Zhu Y. GhCASPL1 regulates secondary cell wall thickening in cotton fibers by stabilizing the cellulose synthase complex on the plasma membrane. J Integr Plant Biol. 2024;66(12):2632-47. https://doi.org/10.1111/jipb.13777
  59. 59. Lin Z, Wang Y, Zhang X, Zhang J. Functional markers for cellulose synthase and their comparison to SSRs in cotton. Plant Mol Biol Rep. 2012;30:1270-5. https://doi.org/10.1007/s11105-012-0432-8
  60. 60. Meuwissen TH, Hayes BJ, Goddard M. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819-29. https://doi.org/10.1093/genetics/157.4.1819
  61. 61. Bhuvaneswari R, Saravanan K, Vennila S, Suganthi S. Advances in genomic selection for enhanced crop improvement: bridging the gap between genomics and plant breeding. Plant Sci Arch. 2020;1(1):1-10. https://doi.org/10.51470/PSA.2020.5.1.11
  62. 62. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los Campos G, et al. Genomic selection in plant breeding: methods, models and perspectives. Trends Plant Sci. 2017;22(11):961-75. https://doi.org/10.1016/j.tplants.2017.08.011
  63. 63. Montesinos-López OA, Montesinos-López A, Mosqueda-Gonzalez BA, Montesinos-López JC, Crossa J. Accounting for correlation between traits in genomic prediction. In: Varshney RK, Roorkiwal M, Sorrells ME, editors. Genomic prediction of complex traits: Methods and protocols. New York: Springer; 2022. p.285-327 https://doi.org/10.1007/978-1-0716-2205-6_10
  64. 64. Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME. Plant breeding with genomic selection: gain per unit time and cost. Crop Sci. 2010;50(5):1681-90. https://doi.org/10.2135/cropsci2009.11.0662
  65. 65. Poland J, Rutkoski J. Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol. 2016;54:79-98. https://doi.org/10.1146/annurev-phyto-080615-100056
  66. 66. Ahmed AI, Khan AI, Negm MA, Iqbal R, Azhar MT, Khan SH, et al. Enhancing cotton resilience to challenging climates through genetic modifications. J Cotton Res. 2024;7(1):10. https://doi.org/10.1186/s42397-024-00171-4
  67. 67. Zhong X, Yang Y, Feng P, Ma Q, Su Q, Wang X, et al. Transcriptomic profiling of cotton leaves in response to cotton aphid damage. Acta Physiol Plant. 2022;44(10):98. https://doi.org/10.1007/s11738-022-03438-y
  68. 68. Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, et al. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem-feeding insect Bemisia tabaci (whitefly). Plant Biotechnol J. 2016;14(10):1956-75. https://doi.org/10.1111/pbi.12554
  69. 69. Zhang Y, Hu Z, Zhang H, Zeng M, Chen Q, Wang H, et al. The long non-coding RNA GhlncRNA149.1 improves cotton defense response to aphid damage as a positive regulator. Plant Cell Tissue Organ Cult. 2023;152(3):517-27. https://doi.org/10.1007/s11240-022-02424-z
  70. 70. Hu Z, Zhang J, Zhong X, Feng W, Zhang H, Luo X, et al. An R2R3 MYB transcription factor GhMYB18 confers cotton aphid resistance through regulating the synthesis of flavonoids in cotton plants. bioRxiv; 2022. https://doi.org/10.21203/rs.3.rs-1371290/v1
  71. 71. Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, et al. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap-sucking insects: aphid and whitefly. BMC Genomics. 2013;14:241. https://doi.org/10.1186/1471-2164-14-241
  72. 72. Naqvi RZ, Zaidi SS, Mukhtar MS, Amin I, Mishra B, Strickler S, et al. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One. 2019;14(2):e0210011. https://doi.org/10.1371/journal.pone.0210011
  73. 73. Rosen R, Lebedev G, Kontsedalov S, Ben-Yakir D, Ghanim M. A de novo transcriptomics approach reveals genes involved in Thrips tabaci resistance to spinosad. Insects. 2021;12(1):67. https://doi.org/10.3390/insects12010067
  74. 74. Balan RK, Ramasamy A, Hande RH, Gawande SJ, Krishna Kumar NK. Genome-wide identification, expression profiling and target gene analysis of microRNAs in the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyaviridae). Ecol Evol. 2018;8(13):6399-419. https://doi.org/10.1002/ece3.3762
  75. 75. Chen B, Zhang Y, Sun Z, Liu Z, Zhang D, Yang J, et al. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease and insect resistance by regulating metabolic flux redirection in cotton. Plant J. 2021;107(3):831-46. https://doi.org/10.1111/tpj.15349
  76. 76. Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803-13. https://doi.org/10.1038/s41588-018-0119-7
  77. 77. Grover CE, Yuan D, Arick MA, Miller ER, Hu G, Peterson DG, et al. The Gossypium stocksii genome as a novel resource for cotton improvement. G3 (Bethesda). 2021;11(7):jkab125. https://doi.org/10.1093/g3journal/jkab125
  78. 78. Zhang S, Gao X, Wang L, Jiang W, Su H, Jing T, et al. Chromosome-level genome assemblies of two cotton-melon aphid Aphis gossypii biotypes unveil mechanisms of host adaptation. Mol Ecol Resour. 2022;22(3):1120-34. https://doi.org/10.1111/1755-0998.13521
  79. 79. Gao Y, Ji J, Xu C, Wang L, Zhang K, Li D, et al. Chromosome-level genome assembly of cotton thrips Thrips tabaci (Thysanoptera: Thripidae). Sci Data. 2024;11(1):1003. https://doi.org/10.1038/s41597-024-03737-8
  80. 80. Zhang Q, Zhang Y, Wang J. Global gene expression in cotton fed upon by Aphis gossypii and Acyrthosiphon gossypii (Hemiptera: Aphididae). J Entomol Sci. 2023;58(1):47-68. https://doi.org/10.18474/JES22-07
  81. 81. Zhang J, Li J, Saeed S, Batchelor WD, Alariqi M, Meng Q, et al. Identification and functional analysis of lncRNA by CRISPR/Cas9 during the cotton response to sap-sucking insect infestation. Front Plant Sci. 2022;13:784511. https://doi.org/10.3389/fpls.2022.784511
  82. 82. Alagarsamy M, Amal TC, Karuppan S. Label-free quantitative proteomic analysis of the cotton (Gossypium hirsutum L.) genotypes with contrasting resistance to leafhopper (Amrasca biguttula biguttula Ishida). bioRxiv; 2023. https://doi.org/10.21203/rs.3.rs-3041753/v1
  83. 83. Venkatesulu S, Makula SP, Satihal MB, Puligundla SK, Srikanth K. Identification of SSR molecular markers for jassid resistance in cotton. Agric Sci Dig. 2023;43(5):695-700. https://doi.org/10.18805/ag.D-5740
  84. 84. Subhashini S, Keerthivarman K, Premalatha N, Kalaimagal T, Muthuswami M, Jeyakumar P. Molecular, cytological and morphological studies on jassid resistance in cotton (Gossypium hirsutum L.) based on hairiness trait. J Cotton Res. 2024;7(1):217. https://doi.org/10.1186/s42397-025-00217-1

Downloads

Download data is not yet available.