Skip to main navigation menu Skip to main content Skip to site footer

Advances in Plant Health Improvement for Sustainable Agriculture

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Economic and environmental impact of drone technology in Indian agriculture: An overview

DOI
https://doi.org/10.14719/pst.9391
Submitted
8 May 2025
Published
26-09-2025

Abstract

Drones or small unmanned aerial vehicles, present a variety of opportunities for the agricultural industry. Drones are widely utilized for real-time airborne photography, sensor data collecting, pesticide spraying, soil analysis and fertilisation and animal monitoring in agriculture. Drones for agricultural spraying are being actively promoted by the Indian federal government. The main goals of these "Kisan drones" are to reduce spraying times, improve the effectiveness and efficiency of using resources for agricultural applications (pesticides, etc.) and lessen the negative health impacts of manually applying pesticides. Drones are anticipated to have a future role in aerial imaging, surveying and transportation in farming. This study shows that the state is actively promoting a more liberalized drone-friendly policy and offering large financial incentives to businesses, groups and specific farmers to buy, use or manufacture drones as needed. In addition to saving time, drones are said to use resources efficiently, saving a significant amount of water. The cost-per-acre unit economics of drone spraying is beginning to catch up with that of manual labour and it reduces input costs by 18 %-20 % and increases crop yields by 30 %-100 % through precision farming. Drones also cut labour and operational costs while enabling efficient coverage of large areas quickly. Environmentally, they lower chemical usage by up to 50 %, conserve water by up to 90 % and reduce the carbon footprint by 25 %. Additionally, drones help reduce post-harvest losses by 50 % and support job creation, making them a key tool for sustainable and productive farming in India.

References

  1. 1. Kendall H, Clark B, Li W, Jin S, Jones GD, Chen J, et al. Precision agriculture technology adoption: a qualitative study of small-scale commercial “family farms” located in the North China Plain. Precis Agric. 2022;1–33. https://doi.org/10.1007/s11119-021-09839-2
  2. 2. Singh P. Drones in Indian agriculture: trends, challenges and policy implications. 2023. https://www.researchgate.net/publication/375085397
  3. 3. Zhao J. Drone technology for precision agriculture: advancements and optimization strategies. Highlights Sci Eng Technol. 2024;111:185–91. https://doi.org/10.54097/h70j2c34.
  4. 4. CIMMYT Economics Program. The adoption of agricultural technology: a guide for survey design. Mexico: CIMMYT. 1993. https://repository.cimmyt.org/server/api/core/bitstreams/ea28bad2-2522-4119-9499-6104d53e6afa/content.
  5. 5. Kalaiselvi P, Chaurasia J, Krishnaveni A, Krishnamoorthi A, Singh A, Kumar V, et al. Harvesting efficiency: the rise of drone technology in modern agriculture. J Sci Res Rep. 2024;30(6):191–207. https://doi.org/10.9734/jsrr/2024/v30i62033
  6. 6. Xia T, Kustas WP, Anderson MC, Alfieri JG, Gao F, McKee L, et al. Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes. Hydrol Earth Syst Sci. 2016;20(4):1523–38. https://doi.org/10.5194/hess-20-1523-2016
  7. 7. Singh N, Gupta D, Joshi M, Yadav K, Nayak S, Kumar M, et al. Application of drones technology in agriculture: a modern approach. J Sci Res Rep. 2024;30(7):142–52. https://doi.org/10.9734/jsrr/2024/v30i72131
  8. 8. Khanal S, Kushal KC, Fulton JP, Shearer S, Ozkan E. Remote sensing in agriculture-accomplishments, limitations and opportunities. Remote Sens. 2020;12(22):3783. https://doi.org/10.3390/rs12223783
  9. 9. Zhao J. Drone technology for precision agriculture: advancements and optimization strategies. Highlights Sci Eng Technol. 2024;111:185–91. https://doi.org/10.54097/h70j2c34
  10. 10. Al-Arab M, Torres-Rua A, Ticlavilca A, Jensen A, McKee M. Use of high-resolution multispectral imagery from an unmanned aerial vehicle in precision agriculture. In: 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway (NJ): IEEE; 2013. p. 6723419. https://doi.org/10.1109/igarss.2013.6723419
  11. 11. Bendig J, Bolten A, Bareth G. Introducing a low-cost mini-UAV for thermal- and multispectral-imaging. Int Arch Photogramm Remote Sens Spat Inf Sci. 2012;XXXIX-B1:345-50. https://doi.org/10.5194/isprsarchives-xxxix-b1-345-2012
  12. 12. Zarco-Tejada PJ, González-Dugo V, Williams LE, Suárez L, Berni JAJ, Goldhamer D, et al. A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens Environ. 2013;138:105–16. https://doi.org/10.1016/j.rse.2013.07.024
  13. 13. Anthony D, Elbaum S, Lorenz A, Detweiler C. On crop height estimation with UAVs. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway (NJ): IEEE; 2014. p. 4887–92. https://doi.org/10.1109/IROS.2014.6943245
  14. 14. Özgüven MM. Determination of sugar beet leaf spot disease level (Cercospora Beticola Sacc.) with image processing technique by using drone. Curr Investig Agric Curr Res. 2018;5(3):000214. https://doi.org/10.32474/ciacr.2018.05.000214
  15. 15. Wen D, Xing T, You F, Cai C. Measurement of nitrogen content in rice by inversion of hyperspectral reflectance data from an unmanned aerial vehicle. Cienc Rural. 2018;48(6):e20180008. https://doi.org/10.1590/0103-8478cr20180008
  16. 16. Schmitz A, Badgujar C, Mansur H, Flippo D, McCornack B, Sharda A. Design of a reconfigurable crop scouting vehicle for row crop navigation: a proof-of-concept study. Sensors. 2022;22(16):6203. https://doi.org/10.3390/s22166203
  17. 17. Vardhan PH, Dheepak S, Aditya PT, Arul S. Development of automated aerial pesticide sprayer. Int J Eng Sci Res Technol. 2014;3(4):458–62. https://doi.org/10.15623/ijret.2014.0304151
  18. 18. Spoorthi S, Shadaksharappa B, Suraj S, Manasa VK. Freyr drone: pesticide/fertilizers spraying drone - an agricultural approach. In: 2017 2nd International Conference on Computing and Communications Technologies (ICCCT). Piscataway (NJ): IEEE. 2017. p. 119-24. https://doi.org/10.1109/ICCCT2.2017.7972289.
  19. 19. Meivel SM, Vasanthapriya A, Maguteeswaran R, Gandhiraj NB, Srinivasan G. Quadcopter UAV based fertilizer and pesticide spraying system. Intl Acad Res J Engineer Scis. 2016.
  20. 20. Hall O, Wahab I. The use of drones in the spatial social sciences. Drones. 2021;5(4):112. https://doi.org/10.3390/drones5040112
  21. 21. Sarghini F, De Vivo A. Interference analysis of an heavy lift multirotor drone flow field and transported spraying system. Chem Eng Trans. 2017;58:631–6. https://doi.org/10.3303/cet1758106
  22. 22. Lee J, Sidle R. Gas-reserves estimation in resource plays. SPE Econ Manag. 2010;2(2):86–91. https://doi.org/10.2118/130102-pa
  23. 23. Gharde Y, Singh PK, Dubey RP, Gupta PK. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 2018;107:12–6. https://doi.org/10.1016/j.cropro.2018.01.007
  24. 24. Huang Y, Reddy KN, Fletcher RS, Pennington D. UAV low-altitude remote sensing for precision weed management. Weed Technol. 2018;32(1):1–10. https://doi.org/10.1017/wet.2017.89
  25. 25. Dash JP, Pearse GD, Watt MS. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sens (Basel). 2018;10(8):1216. https://doi.org/10.3390/rs10081216
  26. 26. Ward S, Hensler J, Alsalam B, Gonzalez LF. Autonomous UAVs wildlife detection using thermal imaging, predictive navigation and computer vision. In: 2016 IEEE Aerospace Conference. Piscataway (NJ): IEEE. 2016. p. 1–10. https://doi.org/10.1109/AERO.2016.7500671
  27. 27. Zhu H, Lan Y, Wu W, Hoffmann WC, Huang Y, Xue X, et al. Development of a PWM precision spraying controller for unmanned aerial vehicles. J Bionic Eng. 2010;7(3):298–305. https://doi.org/10.1016/S1672-6529(10)60251-x
  28. 28. Park S, Ryu D, Fuentes S, Chung H, Hernández-Montes E, O’Connell M. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sens. 2017;9(8):828. https://doi.org/10.3390/rs9080828
  29. 29. Hafeez A, Husain MA, Singh SP, Chauhan A, Khan MT, Kumar N, et al. Implementation of drone technology for farm monitoring & pesticide spraying: a review. Inf Process Agric. 2023;10(1):192-203. https://doi.org/10.1016/j.inpa.2022.02.002
  30. 30. Qu T, Li Y, Zhao Q, Yin Y, Wang Y, Li F, et al. Drone-based multispectral remote sensing inversion for typical crop soil moisture under dry farming conditions. Agriculture. 2024;14(3):484. https://doi.org/10.3390/agriculture14030484
  31. 31. Mazur P, Gozdowski D, Stępień W, Wójcik-Gront E. Does drone data allow the assessment of phosphorus and potassium in soil based on field experiments with winter rye? Agronomy. 2023;13(2):446. https://doi.org/10.3390/agronomy13020446
  32. 32. Mohan M, Richardson G, Gopan G, Aghai MM, Bajaj S, Galgamuwa GAP, et al. UAV-supported forest regeneration: current trends, challenges and implications. Remote Sens (Basel). 2021;13(2):297. https://doi.org/10.3390/rs13020297
  33. 33. Pomeroy R. One trillion trees-World Economic Forum launches plan to help nature and the climate. In: World Economic Forum. 2020.
  34. 34. Shafi U, Mumtaz R, García-Nieto J, Hassan SA, Zaidi SAR, Iqbal N. Precision agriculture techniques and practices: from considerations to applications. Sensors. 2019;19(17):3796. https://doi.org/10.3390/s19173796
  35. 35. Cheng E. Aerial photography and videography using drones. Berkeley (CA): Peachpit Press; 2015.
  36. 36. Shah SA, Lakho GM, Keerio HA, Sattar MN, Hussain G, Mehdi M, et al. Application of drone surveillance for advance agriculture monitoring by android application using convolution neural network. Agronomy. 2023;13(7):1764. https://doi.org/10.3390/agronomy13071764
  37. 37. Reyes-Hung L, Soto I, Majumdar AK. Neural network-based stress detection in crop multispectral imagery for precision agriculture. In: 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). Piscataway (NJ): IEEE. 2024. p. 551–6. https://doi.org/10.1109/csndsp60683.2024.10636640
  38. 38. Klemas VV. Coastal and environmental remote sensing from unmanned aerial vehicles: an overview. J Coast Res. 2015;31(5):1044-56. https://doi.org/10.2112/jcoastres-d-15-00005.1
  39. 39. Liang D, Liu W, Zhao Y. Optimal models for plant disease and pest detection using UAV image. Nat Environ Pollut Technol. 2022;21(4):101–10. https://doi.org/10.46488/nept.2022.v21i04.013
  40. 40. Cheshkova AF. A review of hyperspectral image analysis techniques for plant disease detection and identification. Vavilovskii Zhurnal Genetiki i Selektsii. 2022;26(1):246–55. https://doi.org/10.18699/vjgb-22-25
  41. 41. Lu B, Dao PD, Liu J, He Y, Shang J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens (Basel). 2020;12(16):2659. https://doi.org/10.3390/rs12162659
  42. 42. Guebsi R, Mami S, Chokmani K. Drones in precision agriculture: a comprehensive review of applications, technologies and challenges. Drones. 2024;8(11):686. https://doi.org/10.3390/drones8110686
  43. 43. Fikri MR, Candra T, Saptaji K, Noviarini AN, Wardani DA. A review of implementation and challenges of unmanned aerial vehicles for spraying applications and crop monitoring in Indonesia. arXiv. 2023. https://doi.org/10.48550/arXiv.2301.00379
  44. 44. Nordin MN, Mat Jusoh MS, Abu Bakar BH, Ahmad MT, Mail MF, Tet Vun C, et al. Study on water distribution of spraying drone by different speed and altitude. Adv Agric Food Res J. 2021;2(2):10–7. https://doi.org/10.36877/aafrj.a0000215
  45. 45. Kovalev IV, Kovalev DI, Astanakulov KD, Shaporova ZE, Podoplelova VA, Borovinsky DV. Performance analysis of UAV sprayer application in precision agriculture. Earth and Environmental Science. 2023. p. 012057. https://doi.org/10.1088/1755-1315/1231/1/012057
  46. 46. Fritz BK, Hoffmann WC, Bagley WE, Hewitt A. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems. J ASTM Int. 2011;8(5):STP49685S. https://doi.org/10.1520/stp49685s
  47. 47. Al-Shareeda MA, Manickam S, Saare MA. Intelligent drone-based IoT technology for smart agriculture system. In: 2022 International Conference on Data Science and Intelligent Computing (ICDSIC). Piscataway (NJ): IEEE. 2022. p. 553–8. https://doi.org/10.1109/ICDSIC56987.2022.10076170
  48. 48. Shaw KK, Vimalkumar R. Design and development of a drone for spraying pesticides, fertilizers and disinfectants. Int J Eng Res Technol. 2020;9(5):1089–92.
  49. 49. Zhang YL, Lian Q, Zhang W. Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop protection. Int J Agric Biol Eng. 2017;10(6):75–84. https://doi.org/10.25165/j.ijabe.20171006.3460
  50. 50. Ali H, Zaheer A, Khan S, Ahmed N, Fayyaz A. A hazard-free framework for aerial distribution of pesticides on agricultural land. Mehran Univ Res J Eng Technol. 2020;39(3):545–62. https://doi.org/10.22581/muet1982.2003.10
  51. 51. Yoshida K, Fuzesi I, Suzan M, Nagy L. Measurements of surface contamination of spray equipment with pesticides after various methods of application. J Environ Sci Health B. 1990;25(2):191–209. https://doi.org/10.1080/03601239009372682
  52. 52. Zhou Q, Zhang S, Xue X, Cai C, Wang B. Performance evaluation of UAVs in wheat disease control. Agronomy. 2023;13(8):2131. https://doi.org/10.3390/agronomy13082131
  53. 53. Ijaz B, Nazeer S, Sajjad M, Nadeem M, Anwar H, Idrees M, et al. Effect of various foliar applied micronutrients (Zn+Fe+Cu+B) on growth and yield of wheat under Faisalabad condition. J Glob Innov Agric Sci. 2023;11(2):49–55. https://doi.org/10.22194/jgias/11.1035
  54. 54. Rejeb A, Abdollahi A, Rejeb K, Treiblmaier H. Drones in agriculture: a review and bibliometric analysis. Comput Electron Agric. 2022;198:107017. https://doi.org/10.1016/j.compag.2022.107017
  55. 55. Munawir M, Susanta G. Penentuan alternatif lokasi tempat pembuangan akhir (tpa) sampah di kabupaten sidoarjo. AJOSH J Sci Health. 2022;1(11):92. https://doi.org/10.59888/ajosh.v1i11.92
  56. 56. Chan YK, Koo VC, Zahisham MZA, Lim KM, Connie T, Lim CS, et al. Design and development of a drone based hyperspectral imaging system. In: 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway (NJ): IEEE. 2022. p. 4880-3. https://doi.org/10.1109/IGARSS46834.2022.9884767
  57. 57. Rahaman DMM, Baby T, Oczkowski A, Paul M, Zheng L, Schmidtke LM, et al. Grapevine nutritional disorder detection using image processing. In: Ryo Y, editor. Neural Information Processing. Cham (CH): Springer. 2019. p. 473–84. https://doi.org/10.1007/978-3-030-36718-3_42
  58. 58. Al-Mulla Y, Al-Ruehelli A. Use of drones and satellite images to assess the health of date palm trees. In: 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway (NJ): IEEE. 2020. p. 1089–92. https://doi.org/10.1109/IGARSS39084.2020.9324021
  59. 59. Mohite JD, Gauns A, Twarakavi N, Pappula S. Evaluating the capabilities of Sentinel-2 and Tetracam RGB+3 for multi-temporal detection of thrips on capsicum. Int Arch Photogramm Remote Sens Spat Inf Sci. 2018;XLII-5/W1:407–14. https://doi.org/10.5194/isprs-archives-XLII-5-W1-407-2018
  60. 60. Suzuki Y, Okamoto H, Kataoka T. Image segmentation between crop and weed using hyperspectral imaging for weed detection in soybean field. Environ Control Biol. 2008;46(3):163–71. https://doi.org/10.2525/ecb.46.163
  61. 61. Okamoto H, Murata T, Kataoka T, Hata SI. Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biol Manag. 2007;7(1):33-40. https://doi.org/10.1111/j.1445-6664.2006.00234.x
  62. 62. Wendel A, Underwood J. Self-supervised weed detection in vegetable crops using ground based hyperspectral imaging. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway (NJ): IEEE. 2016. p. 488-94. https://doi.org/10.1109/ICRA.2016.7487717

Downloads

Download data is not yet available.